(©Abstract Hardware Ltd

Poly /ML for X
Reference Manual

Mike Crawley

@©Abstract Hardware Ltd 1991,199, X Reference 1.1 1

Copyright (¢) Abstract Hardware Limited 1991, 1994
Copyright (c) 1987 Digital Equipment Corporation
Copyright (c) 1987 Massachusetts Institute of Technology
All Rights Reserved.

Permission to use, copy, modify, and distribute this signature and its documentation for any
purpose and without fee is hereby granted, provided that the above copyright notices appear in
all copies and that both the copyright notices and this permission notice appear in supporting
documentation, and that the names of Digital, MIT and AHL not be used in advertising or
publicity pertaining to distribution of the signature and its documentation without specific,
written prior permission. Digital, MIT and AHL disclaim all warranties with regard to this
signature and its documentation, including all implied warranties of merchantability and fitness,
in no event shall Digital, MIT or AHL be liable for any special, indirect or consequential damages
or any damages whatsoever resulting from loss of use, data or profits, whether in an action of
contract, negligence or other tortious action, arising out of or in connection with the use or
performance of this signature and its documentation.

The X Window System is a Trademark of MIT.

X Reference 1.1 ©Abstract Hardware Ltd 1991,199/

Contents

1 Introduction 11
1.1 The ML interface 11
1.2 Naming and calling conventions 11
1.3 Event Handling 12
1.4 X and the Garbage Collector 13
1.5 X and Persistent Store Lo 13

2 Function Reference 15
2.1 Colours, Pixels and RGB values 15

2.1.1 And, Or, Xor, Not, >>, << e 15
2.1.2 BlackPixel, WhitePixel 15
2.1.3 Pixel, RGB, XColor 16
2.1.4 XAllocColor, XAllocColorCells, XAllocColorPlanes, XAllocNamedColor,
XFreeColors 17
2.1.5 XLookupColor, XQueryColor, XQueryColors 19
2.1.6 XParseColor e 20
2.1.7 XStoreColor, XStoreColors, XStoreNamedColor 21
2.2 Colormaps 22
2.2.1 DefaultColormap 22
2.2.2 DefaultDepth 22
2.2.3 DisplayCells e 23
224 VisualClass 23
2.2.5 XCreateColormap, XCopyColormapAndFree, XFreeColormap, XSetWin-
dowColormap 24

2.3

2.4

X Reference 1.1 ©Abstract Hardware Ltd 1991,199/

2.2.6 XlInstallColormap, XUninstallColormap, XListInstalledColormaps
2.2.7 XSetRGBColormaps, XGetRGBColormaps
CUrsOTS o v o e
2.3.1 XCreateFontCursor, XCreatePixmapCursor, XCreateGlyphCursor
2.3.2 XDefineCursor, XUndefineCursor, NoCursor
2.3.3 XRecolorCursor, XFreeCursor

Display Specifications Lo

24.1

2.4.2

243

244

2.4.5

2.4.6

2.4.7

2438

2.4.9

2.4.10

2.4.11

2.4.12

2.4.13

24.14

2.4.15

2.4.16

2.4.17

2.4.18

2.4.19

2.4.20

2.4.21

AllPlanes
BitmapBitOrder
BitmapPad
BitmapUnit
ByteOrder
CellsOfScreen e

ColormapkExists, CursorExists, DrawableExists, FontExists, GCExists, Vi-
sualExists oL

ColormaplID, CursorlD, DrawableID, FontID, GCID, VisuallD, Same-
Drawable

DefaultVisual
DisplayConnected
DisplayHeight, DisplayHeight MM, DisplayWidth, DisplayWidthMM . . .
DisplayPlanes
DisplayString
DoesBackingStore
DoesSaveUnders
EventMaskOfScreen L
MinCmapsOfScreen L
MaxCmapsOfScreen

NoColormap, NoCursor, NoDrawable, NoFont, NoVisual, ParentRelative,
CopyFromParentDrawable, CopyFromParentVisual, PointerWindow, In-
putFocus, PointerRoot o o

ProtocolRevision

ProtocolVersion e

@©Abstract Hardware Ltd 1991,199, X Reference 1.1

2.4.22 RootWindow
2.4.23 ServerVendor e
2.4.24 VendorRelease
2.4.25 XQueryBestCursor, XQueryBestSize, XQueryBestStipple, XQueryBest-
Tile e e

2.5 Drawing Primitiveso
2.5.1 XClearArea, XClearWindow
2.5.2 XCopyArea, XCopyPlane
2.5.3 XDrawArc, XDrawArcs
2.5.4 XDrawlmageString, XDrawlmageStringl6
2.5.5 XDrawLine, XDrawLines, XDrawSegments
2.5.6 XDrawPoint, XDrawPoints oL
2.5.7 XDrawRectangle, XDrawRectangles
2.5.8 XDrawString, XDrawStringl6 Lo
2.5.9 XDrawText, XDrawText16

2.5.10 XFillArc, XFillArcs, XFillPolygon, XFillRectangle, XFillRectangles

2.6 Exceptions
2.6.1 Range
2.6.2 XWindows e

2.7 Event Handling
2.7.1 IsCursorKey, IsFunctionKey, IsKeypadKey, IsMiscFunctionKey, IsModi-

fierKey, IsPFKey o
2.7.2 ShiftDown, ControlDown
2.7.3 XLookupString, NoSymbol 0oL
274 XSelectInput
2.7.5 XSetHandler, NullHandler
2.7.6 XSetInputFocus, XGetInputFocus
2.7.7 XSync, XFlush
2.7.8 XSyncronise, XSynchronize 0oL
2.7.9 XTranslateCoordinates

2.9

2.10

2.8.1

2.8.2

2.8.3

2.84

2.8.5

2.8.6

2.8.7

X Reference 1.1 ©Abstract Hardware Ltd 1991,199/

CharLBearing, CharRBearing, CharWidth, CharAscent, CharDescent,
CharAttributes

FSFont, FSDirection, FSMinChar, FSMaxChar, FSMinBytel, FS-
MaxBytel, FSAllCharsExist, FSAllCharsExist, FSDefaultChar, FSMin-
Bounds, FSMaxBounds, PSPerChar, FSPerChar, FSAscent, FSDescent,
FSAscent, FSDescent, FSMinWidth, FSMaxWidth, FSMinHeight, FS-
MaxHeight

XListFonts, XListFontsWithInfo
XLoadFont, XLoadQueryFont, XQueryFont, XFreeFont, XUnloadFont

XSetFontPath, XGetFontPath
XTextExtents, XTextExtents16

XTextWidth, XTextWidth16

Geometry

29.1

2.9.2

2.9.3

294

2.9.5

2.9.6

2.9.7

2.9.8

2.9.9

AddPoint, SubtractPoint oL o

Inside, Overlap, Within, LeftOf, RightOf, AboveOf, BelowOf, Horizon-
tallyAbutting, VerticallyAbutting

Intersection, Union, Section

Left, Right, Top, Bottom, Width, Height, TopLeft, TopRight, Bottom-
Left, BottomRight, XRectangle, Area, Rect, DestructRect, Destruct Area,
CINPLY « . v e e e e e e e

MakeRect, SplitRecto
NegativePoint Lo
OutsetRect, OffsetRect, IncludePoint
Reflect

XPoint e e e e e

GC - Graphics Context e

2.10.1 DefaultGC e

2.10.2 XCreateGC, XChangeGC, XFreeGC

2.10.3 XSetArcMode

2.10.4 XSetBackground Lo o

2.10.5 XSetClipMask e

2.10.6 XSetClipOrigin o

2.10.7 XSetClipRectangles L

@©Abstract Hardware Ltd 1991,199, X Reference 1.1 7

2.11

2.12

2.13

2.14

2.10.8 XSetColours e 78
2.10.9 XSetDashes 79
2.10.10XSetFillRuleo 79
2.10.11 XSetFillStyle 80
2.10.12X8SetFont oL 80
2.10.13XSetForeground oL L 81
2.10.14XSetFunctiono L 81
2.10.15 XSetGraphicsExposures o 81
2.10.16 XSetLineAttributes oL 82
2.10.17XSetPlaneMask oo 82
2.10.18XSetState 83
2.10.19X8SetStipple . . . oL 83
2.10.20XSetSubwindowModeo 84
2.10.21X8SetTile . . . o o o 84
2.10.22XSetTSOrigin 85
Images 85
2.11.1 ImageByteOrder, ImageDepth, ImageSize 85
2.11.2 VisualRedMask, VisualGreenMask, VisualBlueMask 86
2.11.3 XCreatelmage, XGetPixel, XPutPixel, XSublmage, XAddPixel 86
2.11.4 XPutlmage, XGetImage, XGetSublmage 88
Properties and Selectionso oL o 90
2.12.1 XDeleteProperty 90
2.12.2 XlInternAtom, XGetAtomName 90
2.12.3 XSetProperty, XGetTextProperty 91
2.12.4 XSetSelectionOwner, XGetSelectionOwner, XConvertSelection, XSendSe-
lectionNotify 92
Screen Savero e e 94
2.13.1 XSetScreenSaver, XForceScreenSaver, XActivateScreenSaver,
XResetScreenSaver, XGetScreenSaver 94
Tiles, Stipples, Bitmaps and Pixmaps 95

2.14.1 XCreatePixmap, XFreePixmap 95

X Reference 1.1 ©Abstract Hardware Ltd 1991,199/

2.14.2 XReadBitmapFile, XWriteBitmapFile, XCreatePixmapFromBitmapData,

XCreateBitmapFromData oo 0oL 96

2.15 User Preferences e 98
2.15.1 XAutoRepeatOn, XAutoRepeatOff, XBell, XQueryKeymap 98
2.15.2 XGetDefault 98
2.16 Windows e 99
2.16.1 XCreateWindow, XCreateSimpleWindow 99
2.16.2 XDestroyWindow, XDestroySubwindows 101
2.16.3 XGetGeometry, XGetWindowAttributes 101

2.16.4 XGetWindowRoot, XGetWindowPosition, XGetWindowSize, XGetWin-
dowBorderWidth, XGetWindowDepth, XGetWindowParent, XGetWin-
dowChildren 104

2.16.5 XChangeWindowAttributes, XSetWindowBackground, XSetWindow-
BackgroundPixmap, XSetWindowBorder, XSetWindowBorderPixmap . . 104

2.16.6 XConfigureWindow, XMoveWindow, XResizeWindow, XMoveResizeWin-

dow, XSetWindowBorderWidth 106
2.16.7 XMapWindow, XMapRaised, XMapSubwindows 108
2.16.8 XQueryPointer 109
2.16.9 XQueryTree 110
2.16.10 XRaiseWindow, XLower Window, XCirculateSubwindows, XCirculateSub-
windowsDown, XCirculateSubwindowsUp, XRestackWindows 110
2.16.11 XReparentWindow L L Lo 112
2.16.12 XUnmapWindow, XUnmapSubwindows 113
2.17 Window Manager e e e 113
2.17.1 XSetlconSizes, XGetlconSizes L. 113
2.17.2 XSetTransientForHint, XGetTransientForHint 114
2.17.3 XSetWMClass, XGetWMClass 114
2.17.4 XSetWMClientMachine, XGetWMClientMachine 115
2.17.5 XSetWMColormapWindows, XGetWMColormapWindows 116
2.17.6 XSetWMCommand, XGetWMCommand 116
2.17.7 XSetWMHints, XGetWMHints 117

2.17.8 XSetWMIconName, XGetWMIconName 118

@©Abstract Hardware Ltd 1991,199, X Reference 1.1 9

2.17.9 XSetWMName, XGetWMName 119
2.17.10XSetWMProperties Lo 119
2.17.11 XSetWMSizeHints, XGetWMSizeHints, XSetWMNormalHints,
XGetWMNormalHints oL 121
21712XWMGeometry oo e 122
3 Event Reference 125
3.1 XEvent 125
3.2 ButtonPress, ButtonRelease, KeyPress, KeyRelease, MotionNotify 126
3.3 CirculateNotify 128
3.4 CirculateRequest 128
3.5 ColormapNotify 128
3.6 ConfigureNotify 129
3.7 ConfigureRequest 130
3.8 CreateNotify e 130
3.9 DeleteRequest e 130
3.10 DestroyNotify 131
3.11 EnterNotify, LeaveNotify, NotifyMode, NotifyDetail 131
3.12 EXPOSe . . .o e e e 132
3.13 Focusln, FocusOut 133
3.14 GraphicsExpose, NoExpose 133
3.15 GravityNotify L 134
3.16 KeymapNotify 134
3.17 MapNotify 135
3.18 MapRequest 135
3.19 MesSsageo i e e e 135
3.20 ReparentNotify L 135
3.21 ResizeRequest e 136
3.22 SelectionClear L 136
3.23 SelectionNotify 137
3.24 SelectionRequest L 137

10

X Reference 1.1 ©Abstract Hardware Ltd 1991,199/

3.25 UnmapNotify 137
3.26 VisibilityNotify 138
Protocol Error Messages 139
4.1 BadAccess e 139
4.2 BadAlloc e 139
4.3 BadAtom 139
4.4 BadColor e 139
4.5 BadCursor e 140
4.6 BadDrawable e 140
4.7 BadFont 140
4.8 BadGC . . . e 140
4.9 Badlmplementation e 140
4.10 BadIDChoice, BadLength L oo 140
4.11 BadMatch e 141
4.12 BadPixmap e e 142
4.13 BadRequest 142
4.14 BadValue e 142

4.15 BadWindow 142

Chapter 1

Introduction

1.1 The ML interface

We have implemented an ML interface to Xlib, the industry standard C interface for X at
the lowest level, and which is widely used as the basis for many toolkits. We provide all the
major function groups, so that this interface can be used to implement fully functional complex
applications. We also provide a set of geometric functions for handling points and rectangles,
and a set of functions for performing logical operations on plane masks and pixel values.

Xlib is now widely documented, with many good reference and programming manuals available.
We provide our version of the Xlib reference manual with ML signatures and types, and a more
functional style to the programming interface.

We provide ML example programs to show the functionality of the ML interface to Xlib. These
examples range from simple line drawing applications through to colour examples and a mini
text editor showing how to program with selections. The full signatures of the structures are
also provided so that modules may be written for separate compilation.

Because of the great similarity between our interface and the original Xlib, experienced X pro-
grammers can use the skills they have already developed with very few changes.

1.2 Naming and calling conventions

We have kept to the Xlib naming conventions as closely as possible. This means that standard
Xlib documentation can be used along with our reference manual.

Types Drawable, Cursor

Functions XDrawLines, XSetWindowColormap, XLoadQueryFont
Constructors FillTiled, JoinMiter, AllowExposures

Constants XA _PRIMARY, XA _STRING

Labels borderWidth

11

12 X Reference 1.1 ©Abstract Hardware Ltd 1991,199/

Datatypes are used where possible so that arguments are strongly typed and pattern matching
may be used for returned values, this is especially useful for pattern matching the different sub-
types of events. Abstypes are only used for the X resource types which have no meaningful
textual representation.

The functions have been made more functional. Where an Xlib function modified its arguments,
this has been changed so that the function returns new, modified copies of the arguments. Where
values were passed in partially filled-in structures with OR-ed bit masks, now the programmer
uses constructors to make the list of values. Similarly, return values of this type are now lists of
constructed values.

The majority of X applications use a single display and single screen. Typically, they connect to
the display when initialising and then pass the display parameter into every Xlib call from then
on. In release 1 we connect to the display when initialising and implicitly pass the display and
screen parameters to all Xlib functions. This reduces the number of parameters that have to
be supplied and simplifies the signature. Another way of looking at this is to say that we have
already called XOpenDisplay for the user and have partially applied all the Xlib functions with
that display.

In subsequent releases every X resource value will have its display parameter implicitly built in,
a display connection function will be provided, and the types of the other Xlib functions will be
unchanged.

1.3 Event Handling

We provide an alternative event handling scheme.

In normal Xlib programs written in C the user calls XNextEvent and then has to work out which
window the event is for. This soon gets unwieldy as the number of windows increases, and is
very difficult to use when interfacing with toolkits of window functions. In many X toolkits each
newly created window registers a function with an event handler, then events for that window
are passed directly to the window function when the event reaches the head of the event queue.

We implement a similar scheme. When a window is created it is initially unhandled. It can be
used for drawing on, but it will not process any events. An ML function can then be registered
for that window, and an initial value supplied. The registered function will transform the value
to a new value every time an event arrives for that window. In other words, a functional state
machine is set up for each window. We also implement strongly typed message passing between
windows, and extra event types for decoding multi-click events such as double clicking, and for
implementing millisecond-resolution timer events.

In more detail, we have a single Poly/ML process that handles events arriving down the event
queue. It reads each event in turn, finds the window, the window function and the window state,
and applies the event and state to the function. This returns a new state, which replaces the
original state. Because only one process handles the events, we guarantee that no other window
function can run at the same time. Any messages 'sent’ by this window function are queued
up and processed when this event has finished, before the next event from the server. If the
window function raises an exception, instead of returning a new state, then the current state is
left unchanged, and the exception is reported at the terminal. In this way all events are handled
in turn in a predictable order, and in the same way that C event handlers work. The Poly /ML
top level shell process is still available for debugging and control.

@©Abstract Hardware Ltd 1991,199, X Reference 1.1 13

If a window has an operation that takes a long time to complete, then the programmer can
use Poly/ML processes to do the computations ’in the background’ and ’send’ the result as a
message to the window for display. However, the use of processes in this way is discouraged as
they are not standard.

If a window function loops, then all other windows will freeze. Since the Poly /ML top level shell
is available the user can type ~C followed by ’f’ to raise Interrupt in that window function.

1.4 X and the Garbage Collector

The garbage collector in Poly/ML can detect when a value is no longer referenced, and can
perform an action in this circumstance.

This is already done with streams. If you create an instream or an outstream and forget to close
it with close_in or close_out, then it would hang on to its Unix file descriptor for the rest of
the session. File descriptors are considered a precious resource in Unix, you are only allowed to
have a small number of files open at any one time, so the garbage collector detects out of scope
streams and closes the associated file descriptor.

In X there are several types of precious resources. These include Windows, GCs, Pixmaps, Fonts
and Cursors. Functions are provided so that the user can explicitly reclaim the resources used
by these types of object, but a similar problem occurs. If a resource is not explicitly reclaimed,
and allowed to go out of scope then it can never be reclaimed by the user. The garbage collector
steps in and automatically cleans up. The table below summarises the effect.

Window close the window with XDestroyWindow
GC free the GC with XFreeGC

Pixmap free the Pixmap with XFreePixmap

Font unload the Font with XUnloadFont
Cursor free the Cursor with XFreeCursor
XColor free the XColor with XFreeColors
Colormap free the Colormap with XFreeColormap

Xlib includes a function called XFree which is used to free the storage required by the return
types of several of its functions. This is not required in the ML interface because the garbage
collector performs this operation.

1.5 X and Persistent Store

In Poly/ML, persistent store is used to carry all ML values across to the next ML session with
no change, except for a couple of cases.

If you have a stream open when you save your environment, and then you attempt to read or
write that stream in the next session, then Poly/ML will raise the Io exception.

14 X Reference 1.1 ©Abstract Hardware Ltd 1991,199/

In X, many values such as Windows and Pixmaps are volatile, they can only be used in the
session that created them. If you attempt to draw in a window that you have brought across
from an earlier session then Poly /ML will raise an exception. To make things cleaner we provide
the following functions on volatile objects.

val DrawableExists: Drawable -> bool ;

val GCExists: GC -> bool ;

val FontExists: Font -> bool ;

val CursorExists: Cursor -> bool ;

val PixelExists: int -> bool ;
and so on.

These are useful for restarting applications. If an application loads fonts, generates some bitmaps,
and creates some windows to work in, and then gets saved to persistent store, then when the
next session is started the application can detect that its resources have evaporated and can
recreate them only when needed.

Chapter 2

Function Reference

2.1 Colours, Pixels and RGB values

2.1.1 And, Or, Xor, Not, >>, <<

Types:
infix And Or Xor >> <<

val Not: int -> int

val And: int * int -> int
val Or: int * int -> int
val Xor: int * int -> int
val >> : int * int -> int
val << : int * int -> int

Description:

These functions provide useful arithmetic operations on ints representing pixel values and
plane masks, which, in X, are unsigned 32-bit quantities. The least significant bits of these
quantities are on the right, and the most significant bits are on the left.

And, Or and Xor perform bitwise boolean functions.
Not performs bitwise negation, so Not 0 = 4294967295 .

a >> b returns a shifted b bits to the right, where b is not negative. a << b returns a
shifted b bits to the left, where b is not negative.

If negative values, or values greater than 4294967295 are passed to these functions then
exception Range is raised.

2.1.2 BlackPixel, WhitePixel

Types:

val BlackPixel: unit -> int
val WhitePixel: unit -> int

15

16 X Reference 1.1 ©Abstract Hardware Ltd 1991,1994

Syntax:

val black = BlackPixel() ;
val white = WhitePixel() ;

Description:
The BlackPixel function returns the black pixel value for the screen.

The WhitePixel function returns the white pixel value for the screen.

2.1.3 Pixel, RGB, XColor

Types:

val Pixel: XColor -> int
val RGB: XColor -> (int * int * int)

Syntax:

val pixel = Pixel colour ;
val (red,green,blue) = RGB colour ;

Arguments:
pixel Returns the pixel field of the XColor structure
red Returns the red, green and blue components of the XColor structure as num-

bers in the range 0..65535.

Argument Type:

datatype XColor = XColor of { doRed: bool,
doGreen: bool,
doBlue: ©bool,

red: int,
green: int,
blue: int,

pixel: int }

Description:

The red, green, and blue values are scaled between 0 and 65535. Full brightness in a
colour is a value of 65535 independent of the number of bits actually used in the display
hardware. Half brightness in a colour is a value of 32767, and off is 0. This representation
gives uniform results for colour values across different screens. In some functions, the
doRed, doGreen and doBlue fields control which of the red, green, and blue members are
used.

@©Abstract Hardware Ltd 1991,199, X Reference 1.1 17

2.1.4 XAllocColor, XAllocColorCells, XAllocColorPlanes,
XAllocNamedColor, XFreeColors

Types:
val XAllocColor: Colormap -> XColor -> XColor
val XAllocNamedColor: Colormap -> string -> (XColor * XColor)
val XFreeColors: Colormap -> int list -> int -> unit

val XAllocColorCells: Colormap -> bool ->
int -> int -> (int list * int list)

val XAllocColorPlanes: Colormap -> bool ->

int -> int ->
int -> int -> (int list * int * int * int)

Syntax:

val real = XAllocColor cmap colour ;
val (real,desired) = XAllocNamedColor cmap name ;
XFreeColors cmap pixels planes ;
val (masks,basePixels) = XAllocColorCells cmap contig nplanes ncolours ;
val (basePixels,
redMask,
greenMask,

blueMask) = XAllocColorPlanes cmap contig ncolours
nreds ngreens nblues ;

Arguments:

name Specifies the colour name string (for example, red) whose colour defini-
tion structure you want returned.

cmap Specifies the colormap.

contig Specifies a bool that indicates whether the planes must be contiguous.

ncolours Specifies the number of pixel values that are to be returned.

nplanes Specifies the number of plane masks that are to be returned.

nreds Specifies the number of red planes. The value you pass must be nonneg-
ative.

ngreens Specifies the number of green planes. The value you pass must be non-
negative.

nblues Specifies the number of blue planes. The value you pass must be non-
negative.

pixels Specifies a list of pixel values.

planes Specifies the planes you want to free.

colour Specifies the values actually used in the colormap.

desired Returns the exact RGB values.

18 X Reference 1.1 ©Abstract Hardware Ltd 1991,1994

real Returns the closest RGB values provided by the hardware.
masks Returns the list of plane masks

basePixels Returns the list of base pixels

redMask Returns the red mask

greenMask Returns the green mask

blueMask Returns the blue mask

Argument Type:

datatype XColor = XColor of { doRed: bool,
doGreen: bool,
doBlue: bool,

red: int,
green: int,
blue: int,

pixel: int }

Description:

The X AllocColor function allocates a read-only colormap entry corresponding to the
closest RGB values supported by the hardware. XAllocColor returns the pixel value of
the colour closest to the specified RGB elements supported by the hardware and returns the
RGB values actually used. The corresponding colormap cell is read-only. If X AllocColor
fails then exception XWindows is raised with ”XAllocColor failed” . Multiple clients
that request the same effective RGB values can be assigned the same read-only entry,
thus, allowing entries to be shared. When the last client deallocates a shared cell, it is
deallocated. XAllocColor does not use or affect the flags in the XColor structure.

The XAllocNamedColor function looks up the named colour with respect to the screen
that is associated with the specified colormap. It returns both the exact database definition
and the closest colour supported by the screen. The allocated colour cell is read-only.
You should use the ISO Latin-1 encoding; uppercase and lowercase do not matter. If
X AllocNamedColor fails then exception XWindows is raised with ” X AllocNamedColor
failed” .

The X AllocColorCells function allocates read/write colour cells. The number of colours
must be positive and the number of planes nonnegative, otherwise exception Range is raised
or a BadValue error results. If ncolours and nplanes are requested, then ncolours
pixels and nplanes plane masks are returned. No mask will have any bits set to 1 in
common with any other mask or with any of the pixels. By ORing together each pixel
with zero or more masks, ncolours * 2 ~ nplanes distinct pixels can be produced. All
of these are allocated writable by the request. For GrayScale or PseudoColor, each
mask has exactly one bit set to 1. For DirectColor, each has exactly three bits set to
1. If contig is true and if all masks are ORed together, a single contiguous set of bits set
to 1 will be formed for GrayScale or PseudoColor and three contiguous sets of bits set
to 1 (one within each pixel subfield) for DirectColor. The RGB values of the allocated
entries are undefined. If XAllocColorCells fails then exception XWindows is raised
with ” X AllocColorCells failed” .

The XAllocColorPlanes function allocates read/write colour cells. The specified
ncolours must be positive; and nreds, ngreens, and nblues must be nonnegative, other-
wise exception Range is raised or a BadValue error results. If ncolours colours, nreds
reds, ngreens greens, and nblues blues are requested, ncolours pixels are returned; and the
masks have nreds, ngreens, and nblues bits set to 1, respectively. If contig is true, each

@©Abstract Hardware Ltd 1991,199, X Reference 1.1 19

mask will have a contiguous set of bits set to 1. No mask will have any bits set to 1 in
common with any other mask or with any of the pixels. For DirectColor, each mask will
lie within the corresponding pixel subfield. By ORing together subsets of masks with each
pixel value, ncolours * 2 ~ (nreds+ngreens+nblues) distinct pixel values can be pro-
duced. All of these are allocated by the request. However, in the colormap, there are only
ncolours * 2 ~ nreds independent red entries, ncolours * 2 ~ ngreens independent
green entries, and ncolours * 2 ~ nblues independent blue entries. This is true even for
PseudoColor. When the colormap entry of a pixel value is changed (using XStoreCol-
ors, XStoreColor, or XStoreNamedColor), the pixel is decomposed according to the
masks, and the corresponding independent entries are updated. If X AllocColorPlanes
fails then exception XWindows is raised with ”XAllocColorPlanes failed” .

The XFreeColors function frees the cells represented by pixels whose values are in the
pixels list. The planes argument should not have any bits set to 1 in common with any of the
pixels. The set of all pixels is produced by ORing together subsets of the planes argument
with the pixels. The request frees all of these pixels that were allocated by the client (using
XAllocColor, XAllocNamedColor, XAllocColorCells, and XAllocColorPlanes).
Note that freeing an individual pixel obtained from X AllocColorPlanes may not actually
allow it to be reused until all of its related pixels are also freed. Similarly, a read-only entry
is not actually freed until it has been freed by all clients, and if a client allocates the same
read-only entry multiple times, it must free the entry that many times before the entry is
actually freed.

All specified pixels that are allocated by the client in the colormap are freed, even if one
or more pixels produce an error. If a specified pixel is not a valid index into the colormap,
a BadValue error results. If a specified pixel is not allocated by the client (that is, is
unallocated or is only allocated by another client), a BadAccess error results. If more
than one pixel is in error, the one that gets reported is arbitrary.

2.1.5 XLookupColor, XQueryColor, XQueryColors

Types:
val XLookupColor: Colormap -> string -> (XColor * XColor)

val XQueryColor: Colormap -> int -> XColor
val XQueryColors: Colormap -> int list -> XColor list

Syntax:

val (desired,real) = XLookupColor cmap name ;

val colour = XQueryColor cmap pixel ;
val colours = XQueryColors cmap pixels ;

Arguments:
colormap Specifies the colormap.
name Specifies the colour name string (for example, red) whose colour definition
structure you want returned.
colour Returns the RGB values for the specified pixel.
colours Returns a list of colour definition structures for the pixel specified.

desired Returns the exact RGB values.

20 X Reference 1.1 ©Abstract Hardware Ltd 1991,1994

real Returns the closest RGB values provided by the hardware.

Description:

The XLookupColor function looks up the string name of a colour with respect to the
screen associated with the specified colormap. It returns both the exact colour values and
the closest values provided by the screen with respect to the visual type of the specified
colormap. You should use the ISO Latin-1 encoding; uppercase and lowercase do not
matter. XLookupColor raises exception XWindows with ” XLookupColor failed” if the
name did not exist.

The XQueryColor function returns the hardware-specific RGB values for the specified
pixel and sets the DoRed, DoGreen, and DoBlue flags. The XQueryColors function
returns the RGB values for each pixel in the list and sets the DoRed, DoGreen, and
DoBlue flags.

2.1.6 XParseColor

Types:
val XParseColor: Colormap -> string -> XColor
Syntax:

val colour = XParseColor cmap name ;

Arguments:
cmap Specifies the colormap.
name Specifies the colour name string; case is ignored.
colour Returns the exact colour value for later use and sets the doRed, doGreen, and

doBlue flags.

Argument Type:

datatype XColor = XColor of { doRed: bool,
doGreen: bool,
doBlue: ©bool,

red: int,
green: int,
blue: int,

pixel: int }

Description:

The XParseColor function provides a simple way to create a standard user interface
to colour. It takes a string specification of a colour, typically from a command line or
XGetDefault option, and returns the corresponding red, green, and blue values that
are suitable for a subsequent call to XAllocColor or XStoreColor. The colour can be
specified either as a colour name (as in XAllocNamedColor) or as an initial sharp sign
character followed by a numeric specification, in one of the following formats:

#RGB (4 bits each)

@©Abstract Hardware Ltd 1991,199, X Reference 1.1 21

#RRGGBB (8 bits each)
#RRRGGGBBB (12 bits each)
#RRRRGGGGBBBB (16 bits each)

The R, G, and B represent single hexadecimal digits (both uppercase and lowercase).
When fewer than 16 bits each are specified, they represent the most-significant bits of the
value. For example, #3a7 is the same as #3000a0007000. The colormap is used only to
determine which screen to look up the colour on. For example, you can use the screen’s
default colormap.

If the initial character is a sharp sign but the string otherwise fails to fit the above formats
or if the initial character is not a sharp sign and the named colour does not exist in the
server’s database, then exception X Windows is raised with ”XParseColor failed” .

2.1.7 XStoreColor, XStoreColors, XStoreNamedColor

Types:

val XStoreColor: Colormap -> XColor -> unit
val XStoreColors: Colormap -> XColor list -> unit
val XStoreNamedColor: Colormap -> string -> int -> (bool * bool * bool) -> unit

Syntax:

XStoreColor cmap colour ;
XStoreColors cmap colours ;
XStoreNamedColor cmap name pixel (doRed,doGreen,doBlue) ;

Arguments:
colour Specifies the pixel and RGB values
colours Specifies a list of pixel and RGB values
cmap Specifies the colormap.
doRed Specifies if the red component is set
doGreen Specifies if the green component is set
doBlue Specifies if the blue component is set.
name Name of colour to copy RGB values from.
pixel Specifies the entry in the colormap.

Argument Type:

datatype XColor = XColor of { doRed: bool,
doGreen: bool,
doBlue: bool,

red: int,
green: int,
blue: int,

pixel: int }

22 X Reference 1.1 ©Abstract Hardware Ltd 1991,1994

Description:

The XStoreColors function changes the colormap entries of the pixel values specified
in the pixel members of the XColor structures. You specify which colour components
are to be changed by setting doRed, doGreen, and/or doBlue in the XColor structures.
If the colormap is an installed map for its screen, the changes are visible immediately.
XStoreColors changes the specified pixels if they are allocated writable in the colormap
by any client, even if one or more pixels generates an error. If a specified pixel is not
a valid index into the colormap, a BadValue error results. If a specified pixel either is
unallocated or is allocated read-only, a BadAccess error results. If more than one pixel
is in error, the one that gets reported is arbitrary.

The XStoreColor function changes the colormap entry of the pixel value specified in the
pixel member of the XColor structure. You specified this value in the pixel member of
the XColor structure. This pixel value must be a read/write cell and a valid index into
the colormap. If a specified pixel is not a valid index into the colormap, a BadValue error
results. XStoreColor also changes the red, green, and/or blue colour components. You
specify which colour components are to be changed by setting doRed, doGreen, and/or
doBlue in the XColor structure. If the colormap is an installed map for its screen, the
changes are visible immediately.

The XStoreNamedColor function looks up the named colour with respect to the screen
associated with the colormap and stores the result in the specified colormap. The pixel
argument determines the entry in the colormap. The booleans doRed, doGreen, and doBlue
determine which of the red, green, and blue components are set. If the specified pixel is
not a valid index into the colormap, a BadValue error results. If the specified pixel either
is unallocated or is allocated read-only, a BadAccess error results. You should use the
ISO Latin-1 encoding; uppercase and lowercase do not matter.

2.2 Colormaps

2.2.1 DefaultColormap
Types:

val DefaultColormap: unit -> Colormap
Syntax:

val cmap = DefaultColormap() ;

Description:

The DefaultColormap function returns the default colormap for allocation on the screen.

2.2.2 DefaultDepth
Types:

val DefaultDepth: unit -> int

@©Abstract Hardware Ltd 1991,199, X Reference 1.1

Syntax:
val depth = DefaultDepth() ;

Description:

23

The DefaultDepth function returns the depth (number of planes) of the default root

window for the screen.

2.2.3 DisplayCells

Types:

val DisplayCells: unit -> int
Syntax:

val cells = DisplayCells() ;
Description:

The DisplayCells function returns the number of entries in the default colormap.

2.2.4 VisualClass
Types:

val VisualClass: Visual -> VisualClass
Syntax:

val class = VisualClass visual ;

Arguments:

visual Specifies the visual.

class Returns the class from the visual.

Argument Type:

= StaticGray | GrayScale
| StaticColor | PseudoColor
| TrueColor | DirectColor

datatype VisualClass

Description:

Returns the visual class from the specified visual.

24 X Reference 1.1 ©Abstract Hardware Ltd 1991,1994

2.2.5 XCreateColormap, XCopyColormapAndFree, XFreeColormap,

XSetWindowColormap
Types:
val XCreateColormap: Drawable -> Visual -> AllocType -> Colormap
val XCopyColormapAndFree: Colormap -> Colormap
val XFreeColormap: Colormap -> unit
val XSetWindowColormap: Drawable -> Colormap -> unit
Syntax:

val cmap = XCreateColormap w visual alloc ;
val copy = XCopyColormapAndFree cmap ;
XFreeColormap cmap ;

XSetWindowColormap w cmap ;

Arguments:

w Specifies the window

visual Specifies a visual type supported on the screen. If the visual type is not one
supported by the screen, a BadMatch error results.

alloc Specifies the colormap entries to be allocated. You can pass AllocNone or
AllocAll

cmap Specifies the colormap.

copy Returns a copy of the colormap.

Argument Type:

datatype AllocType = AllocNone | AllocAll
datatype VisualClass = StaticGray | GrayScale

| StaticColor | PseudoColor
| TrueColor | DirectColor

datatype XColor = XColor of { doRed: bool,
doGreen: bool,
doBlue: bool,

red: int,
green: int,
blue: int,

pixel: int }

Argument Description:

The red, green, and blue values are scaled between 0 and 65535. Full brightness in a
colour is a value of 65535 independent of the number of bits actually used in the display
hardware. Half brightness in a colour is a value of 32767, and off is 0. This representation
gives uniform results for colour values across different screens. In some functions, the
doRed, doGreen and doBlue fields control which of the red, green, and blue members are
used.

@©Abstract Hardware Ltd 1991,199, X Reference 1.1 25

Description:

The XCreateColormap function creates a colormap of the specified visual type for the
screen on which the specified window resides and returns the colormap associated with it.
Note that the specified window is only used to determine the screen.

The initial values of the colormap entries are undefined for the visual classes GrayScale,
PseudoColor, and DirectColor. For StaticGray, StaticColor, and TrueColor, the
entries have defined values, but those values are specific to the visual and are not defined
by X. For StaticGray, StaticColor, and TrueColor, alloc must be AllocNone, or a
BadMatch error results. For the other visual classes, if alloc is AllocNone, the colormap
initially has no allocated entries, and clients can allocate them.

If alloc is AllocAll, the entire colormap is allocated writable. The initial values of all
allocated entries are undefined. For GrayScale and PseudoColor, the effect is as if
an XAllocColorCells call returned all pixel values from zero to N - 1, where N is the
colormap entries value in the specified visual. For DirectColor, the effect is as if an
XAllocColorPlanes call returned a pixel value of zero and redMask, greenMask, and
blueMask values containing the same bits as the corresponding masks in the specified
visual. However, in all cases, none of these entries can be freed by using XFreeColors.

The XCopyColormapAndFree function creates a colormap of the same visual type and
for the same screen as the specified colormap and returns the new colormap. It also moves
all of the client’s existing allocation from the specified colormap to the new colormap with
their colour values intact and their read-only or writable characteristics intact and frees
those entries in the specified colormap. Color values in other entries in the new colormap are
undefined. If the specified colormap was created by the client with alloc set to AllocAll,
the new colormap is also created with AllocAll, all colour values for all entries are copied
from the specified colormap, and then all entries in the specified colormap are freed. If the
specified colormap was not created by the client with AllocAll, the allocations to be moved
are all those pixels and planes that have been allocated by the client using X AllocColor,
XAllocNamedColor, XAllocColorCells, or XAllocColorPlanes and that have not
been freed since they were allocated.

The XFreeColormap function deletes the association between the colormap resource
in the server and the ML Colormap value. However, this function has no effect on
the default colormap for a screen. If the specified colormap is an installed map for a
screen, it is uninstalled (see XUninstallColormap). If the specified colormap is de-
fined as the colormap for a window (by XCreateWindow, XSetWindowColormap,
or XChangeWindowAttributes), XFreeColormap changes the colormap associated
with the window to NoColormap and generates a ColormapNotify event. X does not
define the colours displayed for a window with a colormap of NoColormap.

The XSetWindowColormap function sets the specified colormap of the specified win-
dow. The colormap must have the same visual type as the window, or a BadMatch error
results.

2.2.6 XlInstallColormap, XUninstallColormap,
XListInstalledColormaps

Types:

val XInstallColormap: Colormap -> unit
val XListInstalledColormaps: Drawable -> Colormap list
val XUninstallColormap: Colormap -> unit

26 X Reference 1.1 ©Abstract Hardware Ltd 1991,1994
Syntax:
XInstallColormap cmap ;
XUninstallColormap cmap ;
val cmaps = XListInstalledColormaps w ;
Arguments:
cmap Specifies the colormap.
w Specifies the window that determines the screen.
Description:

The XInstallColormap function installs the specified colormap for its associated screen.
All windows associated with this colormap immediately display with true colours. You
associated the windows with this colormap when you created them by calling XCre-
ateWindow, XCreateSimpleWindow, XChangeWindowAttributes, or XSetWin-
dowColormap.

If the specified colormap is not already an installed colormap, the X server generates a
ColormapNotify event on each window that has that colormap. In addition, for every
other colormap that is installed as a result of a call to XInstallColormap, the X server
generates a ColormapNotify event on each window that has that colormap.

The XUninstallColormap function removes the specified colormap from the required list
for its screen. As a result, the specified colormap might be uninstalled, and the X server
might implicitly install or uninstall additional colormaps. Which colormaps get installed
or uninstalled is server-dependent except that the required list must remain installed.

If the specified colormap becomes uninstalled, the X server generates a ColormapNotify
event on each window that has that colormap. In addition, for every other colormap that
is installed or uninstalled as a result of a call to XUninstallColormap, the X server
generates a ColormapNotify event on each window that has that colormap.

The XListInstalledColormaps function returns a list of the currently installed col-
ormaps for the screen of the specified window. The order of the colormaps in the list
is not significant and is no explicit indication of the required list. If XListInstalledCol-
ormaps fails then exception XWindows is raised with ” XListInstalledColormaps failed”

2.2.7 XSetRGBColormaps, XGetRGBColormaps

Types:

val XSetRGBColormaps: Drawable -> int -> XStandardColormap list -> unit
val XGetRGBColormaps: Drawable -> int -> XStandardColormap list

Syntax:

XSetRGBColormaps w property stdmaps ;
val maps = XGetRGBColormaps w property ;

Arguments:

w Specifies the window.

@©Abstract Hardware Ltd 1991,199, X Reference 1.1 27

property Specifies the property atom.
stdmaps Specifies the XStandardColormaps to be used
maps Returns the XStandardColormap

Argument Type:

datatype XStandardColormap = XStandardColormap of { colormap: Colormap,
redMax: int,
redMult: int,
greenMax: int,
greenMult: int,
blueMax: int,
blueMult: int,
basePixel: int,
visual: Visual }

Argument Description:

The colormap member is the colormap created by the XCreateColormap function. The
redMax, greenMax, and blueMax members give the maximum red, green, and blue values,
respectively. Each colour coefficient ranges from zero to its max, inclusive. For example,
a common colormap allocation is 3/3/2 (3 planes for red, 3 planes for green, and 2 planes
for blue). This colormap would have redMax = 7, greenMax = 7, and blueMax = 3. An
alternate allocation that uses only 216 colours is redMax = 5, greenMax = 5, and blueMax
= 5.

The redMult, greenMult, and blueMult members give the scale factors used to compose
a full pixel value. (See the discussion of the basePixel members for further information.)
For a 3/3/2 allocation, redMult might be 32, greenMult might be 4, and blueMult might
be 1. For a 6-colours-each allocation, redMult might be 36, greenMult might be 6, and
blueMult might be 1.

The basePixel member gives the base pixel value used to compose a full pixel value. Usually,
the basePixel is obtained from a call to the X AllocColorPlanes function. Given integer
red, green, and blue coefficients in their appropriate ranges, one then can compute a
corresponding pixel value by using the following expression:

r * redMult + g * greenMult + b * blueMult + basePixel

For GrayScale colormaps, only the colormap, redMax, redMult, and basePixel members
are defined. The other members are ignored.

To compute a GrayScale pixel value, use the following expression:
gray * redMult + basePixel

The visual member gives the the visual from which the colormap was created.

The properties containing the XStandardColormap information have the type
RGB_COLOR_MAP.

Description:

XSetRGBColormaps sets the RGB colormap definition in the specified property on the
named window. The property is stored with a type of RGB_COLOR_MAP and a format
of 32. Note that it is the caller’s responsibility to honour the ICCCM restriction that only
RGB_DEFAULT_MAP can contain more than one definition.

28

The XGetRGBColormaps function returns the RGB colormap definitions stored in
the specified property on the named window.
RGB_COLOR_MAP, is of format 32, and is long enough to contain a colormap
definition (if the visual is not present, XGetRGBColormaps assumes the default
visual for the screen on which the window is located), XGetRGBColormaps re-
turns the list of colormaps. Otherwise, XGetRGBColormaps returns the empty list.
Note that it is the caller’s responsibility to honour the ICCCM restriction that only

X Reference 1.1 ©Abstract Hardware Ltd 1991,1994

RGB_DEFAULT_MAP can contain more than one definition.

2.3 Cursors

2.3.1 XCreateFontCursor, XCreatePixmapCursor,
XCreateGlyphCursor

Types:

val XCreateFontCursor:

val XCreatePixmapCursor:

val XCreateGlyphCursor:

Syntax:

val cursor

val cursor

val cursor

Arguments:

background
foreground
mask
maskChar
maskFont
shape
source
sourceChar

sourceFont

int -> Cursor

Drawable -> Drawable ->
XColor -> XColor -> XPoint -> Cursor

Font -> Font ->
int -> int ->
XColor -> XColor -> Cursor

XCreateFontCursor shape ;

XCreatePixmapCursor source mask

foreground background hotspot ;

XCreateGlyphCursor sourceFont maskFont

sourceChar maskChar
foreground background ;

Specifies the RGB values for the background of the source.
Specifies the RGB values for the foreground of the source.
Specifies the cursor’s mask bits to be displayed or NoDrawable.
Specifies the glyph character for the mask.

Specifies the font for the mask glyph or NoFont.

Specifies the shape name of the cursor.

Specifies the cursor’s source bits to be displayed.

Specifies the character glyph for the source.

Specifies the font for the source glyph.

If the property exists, is of type

@©Abstract Hardware Ltd 1991,199, X Reference 1.1 29

hotspot Specifies the x and y coordinates, which indicate the hotspot relative
to the source’s origin.

cursor Returns the new cursor

Argument Type:

datatype XColor = XColor of { doRed: bool,
doGreen: bool,
doBlue: bool,

red: int,
green: int,
blue: int,

pixel: int }

Description:

X provides a set of standard cursor shapes in a special font named cursor. Applications
are encouraged to use this interface for their cursors because the font can be customized
for the individual display type. The shape argument specifies which glyph of the standard
fonts to use.

The hotspot comes from the information stored in the cursor font. The initial colours of a
cursor are a black foreground and a white background (see XRecolorCursor).

The XCreatePixmapCursor function creates and returns a cursor. The foreground and
background RGB values must be specified using foreground and background, even if the
X server only has a StaticGray or GrayScale screen. The foreground colour is used for
the pixels set to 1 in the source, and the background colour is used for the pixels set to 0.
Both source and mask, if specified, must have depth one (or a BadMatch error results)
but can have any root. The mask argument defines the shape of the cursor. The pixels
set to 1 in the mask define which source pixels are displayed, and the pixels set to 0 define
which pixels are ignored. If no mask is given, all pixels of the source are displayed. The
mask, if present, must be the same size as the pixmap defined by the source argument, or a
BadMatch error results. The hotspot must be a point within the source, or a BadMatch
error results.

The components of the cursor can be transformed arbitrarily to meet display limitations.
The pixmaps can be freed immediately if no further explicit references to them are to be
made. Subsequent drawing in the source or mask pixmap has an undefined effect on the
cursor. The X server might or might not make a copy of the pixmap.

The XCreateGlyphCursor function is similar to XCreatePixmapCursor except that
the source and mask bitmaps are obtained from the specified font glyphs. The sourceChar
must be a defined glyph in sourceFont, or a BadValue error results. If maskFont is
given, maskChar must be a defined glyph in maskFont, or a BadValue error results. The
maskFont and maskChar are optional. The origins of the sourceChar and maskChar (if
defined) glyphs are positioned coincidently and define the hotspot. The sourceChar and
maskChar need not have the same bounding box metrics, and there is no restriction on the
placement of the hotspot relative to the bounding boxes. If no maskChar is given, all pixels
of the source are displayed. You can free the fonts immediately by calling XFreeFont if
no further explicit references to them are to be made.

2.3.2 XDefineCursor, XUndefineCursor, NoCursor

Types:

30 X Reference 1.1 ©Abstract Hardware Ltd 1991,1994

val XDefineCursor: Drawable -> Cursor -> unit
val XUndefineCursor: Drawable -> unit
val NoCursor: Cursor

Syntax:

XDefineCursor w cursor ;
XUndefineCursor w ;

Arguments:
cursor Specifies the cursor that is to be displayed or NoCursor.
w Specifies the window.

Description:

If a cursor is set, it will be used when the pointer is in the window. If the cursor is
NoCursor, it is equivalent to XUndefineCursor.

The XUndefineCursor undoes the effect of a previous XDefineCursor for this window.
When the pointer is in the window, the parent’s cursor will now be used. On the root
window, the default cursor is restored.

2.3.3 XRecolorCursor, XFreeCursor

Types:

val XRecolorCursor: Cursor -> XColor -> XColor -> unit
val XFreeCursor: Cursor => unit

Syntax:

XRecolorCursor cursor fg bg ;
XFreeCursor cursor ;

Arguments:
bg Specifies the RGB values for the background of the source.
cursor Specifies the cursor.
fg Specifies the RGB values for the foreground of the source.
Description:

The XRecolorCursor function changes the colour of the specified cursor, and if the cursor
is being displayed on a screen, the change is visible immediately.

The XFreeCursor function deletes the association between the Cursor value and the
specified cursor in the server. The cursor storage is freed when no other resource references
it. The specified cursor should not be referred to again.

@©Abstract Hardware Ltd 1991,199, X Reference 1.1 31

2.4 Display Specifications

2.4.1 AllPlanes

Types:

val AllPlanes: int
Syntax:

val planeMask = AllPlanes ;

Description:

AllPlanes is a value with all bits set to 1 and is suitable for use in a plane mask argument
to a function.

2.4.2 BitmapBitOrder

Types:

val BitmapBitOrder: unit -> ImageOrder
Argument Type:

datatype ImageOrder = LSBFirst | MSBFirst
Syntax:

val order = BitmapBitOrder() ;

Description:

The BitmapBitOrder function returns LSBFirst or MSBF'irst to indicate whether the
leftmost bit in the bitmap as displayed on the screen is the least or most significant bit in
the bytes comprising the bitmap data.

2.4.3 BitmapPad

Types:

val BitmapPad: unit -> int
Syntax:

val pad = BitmapPad() ;

Description:

The BitmapPad function returns the number of bits that each scanline must be padded.

32 X Reference 1.1 ©Abstract Hardware Ltd 1991,1994

2.4.4 BitmapUnit

Types:

val BitmapUnit: unit -> int
Syntax:

val scanline = BitmapUnit() ;
Description:

The BitmapUnit function returns the size of a bitmap’s scanline unit in bits.

2.4.5 ByteOrder
Types:

val ByteOrder: unit -> ImageOrder
Argument Type:

datatype ImageOrder = LSBFirst | MSBFirst
Syntax:

val order = ByteOrder ;

Description:

The ByteOrder function specifies the required byte order for images for each scanline
unit in XY format (bitmap) or for each pixel value in Z format.

2.4.6 CellsOfScreen

Types:

val CellsOfScreen: unit -> int
Syntax:

val cells = CellsOfScreen() ;
Description:

The CellsOfScreen function returns the number of colormap cells in the default colormap
of the screen.

@©Abstract Hardware Ltd 1991,199, X Reference 1.1

2.4.7 ColormapExists, CursorExists, DrawableExists, FontExists,
GCExists, VisualExists

Types:

33

val ColormapExists: Colormap -> bool

val CursorExists: Cursor -> bool

val DrawableExists: Drawable -> bool

val FontExists: Font -> bool

val GCExists: GC -> bool

val VisualExists: Visual -> bool
Description:

In Poly/ML all values may be committed to the database and then referenced in future
Poly /ML sessions. X resources are stored in the X server and are destroyed at the end
of every Poly/ML session. If the user attempts to use an ML value corresponding to an
X resource that existed in an earlier session, then exception XWindows is raised with
”Non-existant resource” . To allow programmers to detect old resources these functions
return true only if the ML value passed in corresponds to an X resource created in this
session, and return false otherwise.

2.4.8 ColormaplID, CursorID, DrawableID, FontID, GCID, VisuallD,

SameDrawable

Types:

type Colormap ;
type Cursor ;
type Drawable ;
type Font ;
type GC ;

type Visual ;

val ColormapID: Colormap -> int

val CursorID: Cursor -> int
val DrawableID: Drawable -> int
val FontID: Font -> int
val GCID: GC -> int
val VisuallD: Visual -> int

val SameDrawable: Drawable -> Drawable -> bool

Description:

These functions return the X identifiers for the corresponding ML value. In X, unique num-
bers are generated for client resources such as windows and pixmaps, and these numbers
are sent in the messages between the X server and the client to identify the resources.

If two resources have the same X identifier, then they are the same resource. Thus the
convenience function SameDrawable is defined as:

fun SameDrawable a b = (DrawableID a = DrawableID b)

34 X Reference 1.1 ©Abstract Hardware Ltd 1991,1994

2.4.9 DefaultVisual

Types:

val DefaultVisual: unit -> Visual
Syntax:

val visual = DefaultVisual() ;

Description:

The DefaultVisual function returns the default visual type for the screen.

2.4.10 DisplayConnected

Types:
val DisplayConnected: unit -> bool

Description:

In release 1 of the X Window interface in Poly/ML, the display is connected to automati-
cally when Poly/ML starts. If -noDisplay was specified on the command line, or Poly /ML
cannot connect to the display for whatever reason, then Poly/ML runs without a display
connected. An attempt to use an X function that needs the display will raise exception
XWindows with ”Display not connected” . To allow programmers to avoid this situation,
this function returns true only if the display is connected, and false otherwise.

2.4.11 DisplayHeight, DisplayHeight MM, DisplayWidth,
DisplayWidthMM

Types:

val DisplayHeight: unit -> int
val DisplayHeightMM: unit -> int
val DisplayWidth: unit -> int
val DisplayWidthMM: wunit -> int

Syntax:

val height = DisplayHeight() ;
val height = DisplayHeightMM() ;
val width = DisplayWidth() ;
val width DisplayWidthMM() ;

Description:
The DisplayHeight function returns the height of the specified screen in pixels.
The DisplayHeight MM function returns the height of the screen in millimeters.
The DisplayWidth function returns the width of the screen in pixels.
The DisplayWidthMM function returns the width of the specified screen in millimeters.

@©Abstract Hardware Ltd 1991,199, X Reference 1.1 35

2.4.12 DisplayPlanes
Types:

val DisplayPlanes: unit -> int
Syntax:

val planes = DisplayPlanes() ;

Description:

The DisplayPlanes function returns the depth of the root window of the screen.

2.4.13 DisplayString

Types:

val DisplayString: unit -> string
Syntax:

val s = DisplayString() ;
Description:

The DisplayString function returns the string that was passed to XOpenDisplay when
the current display was opened.

2.4.14 DoesBackingStore
Types:
val DoesBackingStore: unit -> BackingStore
Syntax:
val bs = DoesBackingStore() ;
Argument Type:
datatype BackingStore = NotUseful | WhenMapped | Always
Description:

The DoesBackingStore function returns WhenMapped, NotUseful, or Always,
which indicate whether the screen supports backing stores.

36 X Reference 1.1 ©Abstract Hardware Ltd 1991,1994

2.4.15 DoesSaveUnders
Types:

val DoesSaveUnders: unit -> bool
Syntax:

val su = DoesSaveUnders() ;
Description:

The DoesSaveUnders function returns a bool indicating whether the screen supports
save unders.

2.4.16 EventMaskOfScreen

Types:

val EventMaskOfScreen: unit -> EventMask list
Syntax:

val mask = EventMaskOfScreen() ;

Description:

The EventMaskOfScreen function returns the root event mask of the root window for
the screen at connection setup.

2.4.17 MinCmapsOfScreen

Types:

val MinCmapsOfScreen: wunit -> int
Syntax:

val n = MinCmaps0OfScreen() ;

Description:

The MinCmapsOfScreen function returns the minimum number of installed colormaps
supported by the screen.

@©Abstract Hardware Ltd 1991,199, X Reference 1.1 37

2.4.18 MaxCmapsOfScreen

Types:

val MaxCmapsOfScreen: wunit -> int
Syntax:

val n = MaxCmapsOfScreen() ;

Description:

The MaxCmapsOfScreen function returns the maximum number of installed colormaps
supported by the screen.

2.4.19 NoColormap, NoCursor, NoDrawable, NoFont, NoVisual,
ParentRelative, CopyFromParentDrawable,
CopyFromParentVisual, PointerWindow, InputFocus,

PointerRoot
Types:
val NoColormap: Colormap
val NoCursor: Cursor
val NoDrawable: Drawable
val NoFont: Font
val NoVisual: Visual
val ParentRelative: Drawable
val CopyFromParentDrawable: Drawable
val CopyFromParentVisual: Visual
val PointerWindow: Drawable
val InputFocus: Drawable
val PointerRoot: Drawable
Description:

These names refer to constant values of the indicated type that may be used instead of
passing a real, live instance of one of these types. Typically they are used to indicate that
some default action should take place. For example, setting the background pixmap of a
window to ParentRelative specifies that the background pixmap of the window’s parent
is to be used.

2.4.20 ProtocolRevision

Types:
val ProtocolRevision: unit -> int
Syntax:

val rev = ProtocolRevision() ;

38 X Reference 1.1 ©Abstract Hardware Ltd 1991,1994

Description:

The ProtocolRevision function returns the minor protocol revision number of the X
server.

2.4.21 ProtocolVersion

Types:

val ProtocolVersion: unit -> int
Syntax:

val v = ProtocolVersion() ;
Description:

The ProtocolVersion function returns the major version number (11) of the X protocol
associated with the connected display.

2.4.22 RootWindow

Types:

val RootWindow: unit -> Drawable
Syntax:

val root = RootWindow() ;
Description:

The RootWindow function returns the root window.

2.4.23 ServerVendor

Types:

val ServerVendor: unit -> string
Syntax:

val s = ServerVendor() ;
Description:

The ServerVendor function returns a string that provides some identification of the owner
of the X server implementation.

©Abstract Hardware Ltd 1991,1994

2.4.24 VendorRelease

Types:

val VendorRelease: unit -> int
Syntax:
val n = VendorRelease() ;

Description:

X Reference 1.1

39

The VendorRelease function returns a number related to a vendor’s release of the X

server.

2.4.25 XQueryBestCursor, XQueryBestSize, XQueryBestStipple,

XQueryBestTile
Types:
val XQueryBestSize: ShapeClass -> Drawable ->
val XQueryBestCursor: Drawable -> XRectangle
val XQueryBestStipple: Drawable -> XRectangle
val XQueryBestTile: Drawable -> XRectangle
Syntax:
val bestSize = XQueryBestCursor whichScreen
val bestSize = XQueryBestSize whichScreen
val bestSize = XQueryBestStipple whichScreen
val bestSize = XQueryBestTile whichScreen

Argument Type:

XRectangle -> XRectangle

-> XRectangle
-> XRectangle
-> XRectangle

area ;
class area ;
area ;
area ;

datatype ShapeClass = CursorShape | TileShape | StippleShape

Arguments:

class

CursorShape, or StippleShape.

whichScreen
area

bestSize

display hardware.

Drawable to determine which screen.
Specifies the width and height.
Returns the width and height of the object best supported by the

Specifies the class that you are interested in. You can pass TileShape,

40 X Reference 1.1 ©Abstract Hardware Ltd 1991,1994

Description:

The XQueryBestSize function returns the best or closest size to the specified size. For
CursorShape, this is the largest size that can be fully displayed on the screen specified by
whichScreen. For TileShape, this is the size that can be tiled fastest. For StippleShape,
this is the size that can be stippled fastest. For CursorShape, the drawable indicates
the desired screen. For TileShape and StippleShape, the drawable indicates the screen
and possibly the window class and depth. An InputOnly window cannot be used as the
drawable for TileShape or StippleShape, or a BadMatch error results.

The XQueryBestTile function returns the best or closest size, that is, the size that
can be tiled fastest on the screen specified by d. The drawable indicates the screen and
possibly the window class and depth. If an InputOnly window is used as the drawable, a
BadMatch error results.

The XQueryBestStipple function returns the best or closest size, that is, the size that
can be stippled fastest on the screen specified by whichScreen. The drawable indicates the
screen and possibly the window class and depth. If an InputOnly window is used as the
drawable, a BadMatch error results.

Some displays allow larger cursors than other displays. The XQueryBestCursor function
provides a way to find out what size cursors are actually possible on the display. It returns
the largest size that can be displayed. Applications should be prepared to use smaller
cursors on displays that cannot support large ones.

2.5 Drawing Primitives

2.5.1 XClearArea, XClearWindow

Types:

val XClearArea: Drawable -> XRectangle -> bool -> unit
val XClearWindow: Drawable -> unit

Syntax:

XClearArea w area exposures ;
XClearWindow w ;

Arguments:
exposures Specifies a bool that indicates if Expose events are to be generated.
area Specifies the area to be cleared in the window.
w Specifies the window.

Description:

The XClearArea function paints a rectangular area in the specified window according to
the specified dimensions with the window’s background pixel or pixmap. The subwindow-
mode effectively is ClipByChildren. If width is zero, it is replaced with the current
width of the window minus x. If height is zero, it is replaced with the current height of
the window minus y. If the window has a defined background tile, the rectangle clipped
by any children is filled with this tile. If the window has background NoDrawable, the

@©Abstract Hardware Ltd 1991,199, X Reference 1.1 41

contents of the window are not changed. In either case, if exposures is true, one or more
Expose events are generated for regions of the rectangle that are either visible or are being
retained in a backing store. If you specify a window whose class is InputOnlyClass, a
BadMatch error results.

The XClearWindow function clears the entire area in the specified window and is equiv-
alent to XClearArea w empty false . If the window has a defined background tile, the
rectangle is tiled with a plane-mask of all ones and GXcopy function. If the window has
background NoDrawable, the contents of the window are not changed. If you specify a
window whose class is InputOnlyClass, a BadMatch error results.

2.5.2 XCopyArea, XCopyPlane

Types:

val XCopyArea: Drawable -> Drawable -> GC ->
XPoint -> XRectangle -> unit

val XCopyPlane: Drawable -> Drawable -> GC ->
XPoint -> XRectangle -> int -> unit

Syntax:

XCopyArea src dest gc srcPoint destArea ;
XCopyPlane src dest gc srcPoint destArea plane ;

Arguments:

destArea Specifies the destination rectangle

gc Specifies the GC.

plane Specifies the bit plane. You must set exactly one bit to 1.

src Specifies the source

dest and destination drawables to be combined.

srcPoint Specifies the upper-left corner of the source rectangle.
Description:

The XCopyArea function combines the specified rectangle of src with the specified rect-
angle of dest. The drawables must have the same root and depth, or a BadMatch error
results.

If regions of the source rectangle are obscured and have not been retained in backing store
or if regions outside the boundaries of the source drawable are specified, those regions are
not copied. Instead, the following occurs on all corresponding destination regions that
are either visible or are retained in backing store. If the destination is a window with a
background other than NoDrawable, corresponding regions of the destination are tiled
with that background (with plane-mask of all ones and GXcopy function). Regardless of
tiling or whether the destination is a window or a pixmap, if graphics-exposures is true,
then GraphicsExpose events for all corresponding destination regions are generated. If
graphics-exposures is true but no GraphicsExpose events are generated, a NoExpose
event is generated. Note that by default graphics-exposures is true in new GCs.

42

X Reference 1.1 ©Abstract Hardware Ltd 1991,1994

This function uses these GC components: function, plane-mask, subwindow-mode,
graphics-exposures, clip-origin, and clip-mask.

The XCopyPlane function uses a single bit plane of the specified source rectangle com-
bined with the specified GC to modify the specified rectangle of dest. The drawables must
have the same root but need not have the same depth. If the drawables do not have the
same root, a BadMatch error results. If plane does not have exactly one bit set to 1 and
is less than 2 ~ n , where n is the depth of the drawables, a BadValue error results.

Effectively, XCopyPlane forms a pixmap of the same depth as the rectangle of dest and
with a size specified by the source region. It uses the foreground/background pixels in
the GC (foreground everywhere the bit plane in src contains a bit set to 1, background
everywhere the bit plane in src contains a bit set to 0) and the equivalent of a CopyArea
protocol request is performed with all the same exposure semantics. This can also be
thought of as using the specified region of the source bit plane as a stipple with a fill-style
of FillOpaqueStippled for filling a rectangular area of the destination.

This function uses these GC components: function, plane-mask, foreground, background,
subwindow-mode, graphics-exposures, clip-origin, and clip-mask.

2.5.3 XDrawArc, XDrawArcs

Types:

val XDrawArc: Drawable -> GC -> XArc -> unit

val XDrawArcs: Drawable -> GC -> XArc list -> unit
Syntax:

XDrawArc d gc (XArc (area,anglel,angle2)) ;
XDrawArcs d gc arcs ;

Arguments:

anglel Specifies the start of the arc relative to the three-o’clock position from the
center, in units of degrees * 64.

angle2 Specifies the path and extent of the arc relative to the start of the arc, in
units of degrees * 64.

arcs Specifies a list of arcs.

d Specifies the drawable.

gc Specifies the GC.

area Specifies the bounding rectangle of the area. The x and y coordinates, which

are relative to the origin of the drawable, specify the upper-left corner of the
bounding rectangle. The width and height are the major and minor axes of
the arc.

Argument Type:

datatype XArc = XArc of XRectangle * int * int

@©Abstract Hardware Ltd 1991,199, X Reference 1.1 43

Description:

XDrawArc draws a single circular or elliptical arc, and XDrawArcs draws multiple
circular or elliptical arcs. Each arc is specified by a rectangle and two angles. The center
of the circle or ellipse is the center of the rectangle, and the major and minor axes are
specified by the width and height. Positive angles indicate counterclockwise motion, and
negative angles indicate clockwise motion. If the magnitude of angle2 is greater than 360
degrees, XDrawArc or XDrawArcs truncates it to 360 degrees.

For an arc specified as

(XArc (Area {x,y,width,height}),anglel,angle2),
the origin of the major and minor axes is at

(x + width div 2,y + height div 2),

and the infinitely thin path describing the entire circle or ellipse intersects the horizontal
axis at

(x,y + height div 2) and (x + width,y + height div 2)
and intersects the vertical axis at
(x + width div 2,y) and (x + width div 2,y + height)

These coordinates can be fractional and so are not truncated to discrete coordinates. The
path should be defined by the ideal mathematical path. For a wide line with line-width
lw, the bounding outlines for filling are given by the two infinitely thin paths consisting of
all points whose perpendicular distance from the path of the circle/ellipse is equal to lw/2
(which may be a fractional value). The cap-style and join-style are applied the same as for
a line corresponding to the tangent of the circle/ellipse at the endpoint.

For an arc specified as

(XArc (Area {x,y,width,height}),anglel,angle2),
the angles must be specified in the effectively skewed coordinate system of the ellipse (for
a circle, the angles and coordinate systems are identical). The relationship between these
angles and angles expressed in the normal coordinate system of the screen (as measured
with a protractor) is as follows:

skewed-angle = atan (tan normal-angle * width div height) + adjust

The skewed-angle and normal-angle are expressed in radians (rather than in degrees scaled
by 64) in the range (0,2*pi) and where atan returns a value in the range (“pi/2,pi/2) and

adjust is:

0 for normal-angle in the range (0,pi/2)

pi for normal-angle in the range (pi/2,3*pi/2)
2*%pi for normal-angle in the range (3*pi/2,2*pi)

For any given arc, XDrawArc and XDrawArcs do not draw a pixel more than once.
If two arcs join correctly and if the line-width is greater than zero and the arcs intersect,
XDrawArc and XDrawArcs do not draw a pixel more than once. Otherwise, the in-
tersecting pixels of intersecting arcs are drawn multiple times. Specifying an arc with one

44

X Reference 1.1 ©Abstract Hardware Ltd 1991,1994

endpoint and a clockwise extent draws the same pixels as specifying the other endpoint
and an equivalent counterclockwise extent, except as it affects joins.

If the last point in one arc coincides with the first point in the following arc, the two arcs
will join correctly. If the first point in the first arc coincides with the last point in the
last arc, the two arcs will join correctly. By specifying one axis to be zero, a horizontal
or vertical line can be drawn. Angles are computed based solely on the coordinate system
and ignore the aspect ratio.

Both functions use these GC components: foreground, background, tile, stipple, tile-
stipple-origin, dash-offset, dash-list, function, plane-mask, line-width, line-style, cap-style,
join-style, fill-style, subwindow-mode, clip-origin, and clip-mask.

2.5.4 XDrawlmageString, XDrawlmageStringl6

Types:

val XDrawImageString: Drawable -> GC -> XPoint -> string -> unit
val XDrawImageStringl6: Drawable -> GC -> XPoint -> int list -> unit

Syntax:

XDrawImageString d gc point string ;
XDrawImageStringl6 d gc point bigChars ;

Arguments:

d Specifies the drawable.

gc Specifies the GC.

string Specifies the character string.

bigChars Specifies the character string as a list of 16 bit integers.

point Specifies the x and y coordinates, which are relative to the origin of the

specified drawable and define the origin of the first character.

Description:

The XDrawImageStringl6 function is similar to XDrawImageString except that it
uses 16-bit characters. Both functions also use both the foreground and background pixels
of the GC in the destination.

The effect is first to fill a destination rectangle with the background pixel defined in the
GC and then to paint the text with the foreground pixel. The upper-left corner of the
filled rectangle is at (x,y-ascent), the width is overall, and the height is ascent+descent.
The overall, ascent, and descent are as would be returned by XTextExtents using the
font in the gc and string. The function and fill-style defined in the GC are ignored for
these functions. The effective function is GXcopy, and the effective fill-style is FillSolid.

For fonts defined with 16-bit matrix indexing and used with XDrawImageString, each
8-bit character in the string is used to form the least-significant 8-bits of the index, the
most-significant bits are taken to be zero.

Both functions use these GC components: plane-mask, foreground, background, font,
subwindow-mode, clip-origin, and clip-mask.

@©Abstract Hardware Ltd 1991,199, X Reference 1.1 45

2.5.5 XDrawLine, XDrawLines, XDrawSegments

Types:

val XDrawLine: Drawable -> GC -> XPoint -> XPoint -> unit
val XDrawLines: Drawable -> GC -> XPoint list -> CoordMode -> unit
val XDrawSegments: Drawable -> GC -> (XPoint * XPoint) list -> unit

Syntax:

XDrawLine d gc pointl point2 ;
XDrawLines d gc points mode ;
XDrawSegments d gc segments ;

Arguments:

d Specifies the drawable.

gc Specifies the GC.

mode Specifies the coordinate mode. You can pass CoordModeOrigin or Co-
ordModePrevious.

points Specifies a list of points.

segments Specifies a list of pairs of points.

pointl Specifies the points

point2 to be connected.

Argument Type:

datatype CoordMode = CoordModeOrigin | CoordModePrevious

Description:

The XDrawLine function uses the components of the specified GC to draw a line between
the specified set of points (x1,yl) and (x2,y2). It does not perform joining at coincident
endpoints. For any given line, XDrawLine does not draw a pixel more than once. If lines
intersect, the intersecting pixels are drawn multiple times.

The XDrawLines function uses the components of the specified GC to draw npoints-1
lines between each pair of points (point[i],point[i41]) in the list of XPoint structures. It
draws the lines in the same order as the list. The lines join correctly at all intermediate
points, and if the first and last points coincide, the first and last lines also join correctly.
For any given line, XDrawLines does not draw a pixel more than once. If thin (zero
line-width) lines intersect, the intersecting pixels are drawn multiple times. If wide lines
intersect, the intersecting pixels are drawn only once, as though the entire PolyLine pro-
tocol request were a single, filled shape. CoordModeOrigin treats all coordinates as
relative to the origin, and CoordModePrevious treats all coordinates after the first as
relative to the previous point.

The XDrawSegments function draws multiple, unconnected lines. For each segment,
XDrawSegments draws a line between (x1,y1) and (x2,y2). It draws the lines in the same
order as the list of pairs of points and does not perform joining at coincident endpoints.
For any given line, XDrawSegments does not draw a pixel more than once. If lines
intersect, the intersecting pixels are drawn multiple times.

All three functions use these GC components: foreground, background, tile, stipple, tile-
stipple-origin, dash-offset, dash-list, function, plane-mask, line-width, line-style, cap-style,
fill-style, subwindow-mode, clip-origin, and clip-mask. The XDrawLines function also
uses the join-style GC component.

46 X Reference 1.1 ©Abstract Hardware Ltd 1991,1994

2.5.6 XDrawPoint, XDrawPoints

Types:
val XDrawPoint: Drawable -> GC -> XPoint -> unit
val XDrawPoints: Drawable -> GC -> XPoint list -> CoordMode -> unit
Syntax:
XDrawPoint d gc point ;
XDrawPoints d gc points mode ;
Arguments:
d Specifies the drawable.
gc Specifies the GC.
points Specifies a list of points.
point Specifies the point.
mode Specifies the coordinate mode. You can pass CoordModeOrigin or Coord-

ModePrevious.

Argument Type:
datatype CoordMode = CoordModeOrigin | CoordModePrevious

Description:

The XDrawPoint function uses the foreground pixel and function components of the
GC to draw a single point into the specified drawable; XDrawPoints draws multiple
points this way. CoordModeOrigin treats all coordinates as relative to the origin, and
CoordModePrevious treats all coordinates after the first as relative to the previous
point. XDrawPoints draws the points in the same order as the list.

Both functions use these GC components: function, plane-mask, foreground, subwindow-
mode, clip-origin, and clip-mask.

2.5.7 XDrawRectangle, XDrawRectangles

Types:
val XDrawRectangle: Drawable -> GC -> XRectangle -> unit
val XDrawRectangles: Drawable -> GC -> XRectangle list -> unit
Syntax:
XDrawRectangle d gc (Area{x=x,y=y,w=width,h=height}) ;
XDrawRectangles d gc rectangles ;
Arguments:

d Specifies the drawable.

@©Abstract Hardware Ltd 1991,199, X Reference 1.1 47

gc Specifies the GC.
rectangles Specifies a list of rectangles.
X,y Specifies the upper-left corner of the rectangle.
width Specifies the dimensions
height of the rectangle.
Description:

The XDrawRectangle and XDrawRectangles functions draw the outlines of the spec-
ified rectangle or rectangles as if a five-point PolyLine protocol request were specified for
each rectangle:

[(x,y), (x+width,y), (x+width,y+height) , (x,y+height), (x,y)]
For the specified rectangle or rectangles, these functions do not draw a pixel more than

once. XDrawRectangles draws the rectangles in the same order as the list. If rectangles
intersect, the intersecting pixels are drawn multiple times.

Both functions use these GC components: foreground, background, tile, stipple, tile-
stipple-origin, dash-offset, dash-list, function, plane-mask, line-width, line-style, join-style,
fill-style, subwindow-mode, clip-origin, and clip-mask.

2.5.8 XDrawString, XDrawStringl6

Types:

val XDrawString: Drawable -> GC -> XPoint -> string -> unit
val XDrawStringl6: Drawable -> GC -> XPoint -> int list -> unit

Syntax:

XDrawString d gc point string ;
XDrawStringl6 d gc point bigChars ;

Arguments:

d Specifies the drawable.

gc Specifies the GC.

string Specifies the character string.

bigChars Specifies the character string as a list of 16-bit integers.

point Specifies the x and y coordinates, which are relative to the origin of the

specified drawable and define the origin of the first character.

Description:

Each character image, as defined by the font in the GC, is treated as an additional mask
for a fill operation on the drawable. The drawable is modified only where the font character
has a bit set to 1.

For fonts with 2-byte indexing rather than 16-bit linear indexing, pass byte 1 as the most-
significant 8-bits and byte 2 as the least-significant 8-bits in the bigChars argument.

48

X Reference 1.1 ©Abstract Hardware Ltd 1991,1994

For fonts defined with 16-bit linear indexing and used with XDrawString, each 8-bit
character in the string is used to form the least-significant 8-bits of the index, the most-
significant bits are taken to be zero.

For fonts defined with 2-byte matrix indexing and used with XDrawString, each 8-bit
character in the string is used to form byte 2 of the index, byte 1 is taken to be zero.

Both functions use these GC components: foreground, background, tile, stipple, tile-
stipple-origin, function, plane-mask, fill-style, font, subwindow-mode, clip-origin, and clip-
mask.

2.5.9 XDrawText, XDrawText16

Types:

val XDrawText: Drawable -> GC -> XPoint -> XTextItem list -> unit
val XDrawText16: Drawable -> GC -> XPoint -> XTextIteml16 list -> unit

Syntax:

XDrawText d gc point items ;
XDrawText16 d gc point items ;

Arguments:
d Specifies the drawable.
gc Specifies the GC.
point Specifies the x and y coordinates, which are relative to the origin of the specified
drawable and define the origin of the first character.
items Specifies a list of text items.

Argument Type:

datatype XTextItem XTextItem of string * int * Font
datatype XTextIteml6 = XTextIteml6 of int list * int * Font

Argument Description:

If the font member is not NoFont, the font is changed before printing and also is stored
in the GC. If an error was generated during text drawing, the previous items may have
been drawn. The baseline of the characters are drawn starting at the x and y coordinates
that you pass in the text drawing functions.

For example, consider the background rectangle drawn by XDrawlImageString. If you
want the upper-left corner of the background rectangle to be at pixel coordinate (x,y), pass
the (x,y+ascent) as the baseline origin coordinates to the text functions. The ascent is the
font ascent, as given in the XFontStruct structure. If you want the lower-left corner of
the background rectangle to be at pixel coordinate (x,y), pass the (x,y-descent+1) as the
baseline origin coordinates to the text functions. The descent is the font descent, as given
in the XFontStruct structure.

@©Abstract Hardware Ltd 1991,199, X Reference 1.1 49

Description:

The XDrawText16 function is similar to XDrawText except that it uses 16-bit charac-
ters. Both functions allow complex spacing and font shifts between counted strings.

Each text item is processed in turn. A font member other than NoFont in an item causes
the font to be stored in the GC and used for subsequent text. A text element delta specifies
an additional change in the position along the x axis before the string is drawn. The delta
is always added to the character origin and is not dependent on any characteristics of the
font. Each character image, as defined by the font in the GC, is treated as an additional
mask for a fill operation on the drawable. The drawable is modified only where the font
character has a bit set to 1. If a text item generates a BadFont error, the previous text
items may have been drawn.

For fonts with 2-byte indexing rather than 16-bit linear indexing, pass byte 1 as the high
order 8-bits and byte 2 as the low order 8-bits in the XTextItem16 list.

Both functions use these GC components: foreground, background, tile, stipple, tile-
stipple-origin, function, plane-mask, fill-style, font, subwindow-mode, clip-origin, and clip-
mask.

2.5.10 XFillArc, XFillArcs, XFillPolygon, XFillRectangle,

XFillRectangles

Types:

val XFillArc: Drawable -> GC -> XArc -> unit

val XFillArcs: Drawable -> GC -> XArc list -> unit

val XFillRectangle: Drawable -> GC -> XRectangle -> unit

val XFillRectangles: Drawable -> GC -> XRectangle list -> unit

val XFillPolygon: Drawable -> GC —>

XPoint list -> PolyShape -> CoordMode -> unit

Syntax:

XFillArc d gc (XArc (area,anglel,angle2)) ;

XFillArcs d gc arcs ;

XFillPolygon d gc points shape mode ;

XFillRectangle d gc (Area{x=x,y=y,w=width,h=height}) ;
XFillRectangles d gc rectangles ;

Argument Type:

datatype PolyShape = Complex | Nonconvex | Convex

datatype CoordMode = CoordModeOrigin | CoordModePrevious

Arguments:

d Specifies the drawable.
gc Specifies the GC.

50 X Reference 1.1 ©Abstract Hardware Ltd 1991,1994

area Specifies the bounding rectangle of the area. The x and y coordinates,
which are relative to the origin of the drawable, specify the upper-left
corner of the bounding rectangle. The width and height are the major
and minor axes of the arc.

anglel Specifies the start of the arc relative to the three-o’clock position from
the center, in units of degrees * 64.

angle2 Specifies the path and extent of the arc relative to the start of the arc,
in units of degrees * 64.

arcs Specifies a list of arcs.

points Specifies a list of points.

shape Specifies a shape that helps the server to improve performance. You can
pass Complex, Convex, or Nonconvex.

mode Specifies the coordinate mode. You can pass CoordModeOrigin or
CoordModePrevious.

X,y Specifies the upper-left corner of the rectangle.

width Specifies the dimensions

height of the rectangle.

rectangles Specifies a list of rectangles.

Description:

The XFillRectangle and XFillRectangles functions fill the specified rectangle or rect-
angles as if a four-point FillPolygon protocol request were specified for each rectangle:

[(x,y), (x+width,y), (x+width,y+height) , (x,y+height)]

Each function uses the x and y coordinates, width and height dimensions, and GC you
specify.

XFillRectangles fills the rectangles in the same order as the list. For any given rectangle,
XFillRectangle and XFillRectangles do not draw a pixel more than once. If rectangles
intersect, the intersecting pixels are drawn multiple times.

Both functions use these GC components: foreground, background, tile, stipple, tile-
stipple-origin, function, plane-mask, fill-style, subwindow-mode, clip-origin, and clip-mask.

XFillPolygon fills the region closed by the specified path. The path is closed automati-
cally if the last point in the list does not coincide with the first point. XFillPolygon does
not draw a pixel of the region more than once. CoordModeOrigin treats all coordinates
as relative to the origin, and CoordModePrevious treats all coordinates after the first
as relative to the previous point.

Depending on the specified shape, the following occurs:

If shape is Complex, the path may self-intersect. Note that contiguous coincident
points in the path are not treated as self-intersection.

If shape is Convex, for every pair of points inside the polygon, the line segment
connecting them does not intersect the path. If known by the client, specifying
Convex can improve performance. If you specify Convex for a path that is not
convex, the graphics results are undefined.

If shape is Nonconvex, the path does not self-intersect, but the shape is not wholly
convex. If known by the client, specifying Nonconvex instead of Complex may
improve performance. If you specify Nonconvex for a self-intersecting path, the
graphics results are undefined.

@©Abstract Hardware Ltd 1991,199, X Reference 1.1 51

The fill-rule of the GC controls the filling behavior of self-intersecting polygons.

This function uses these GC components: foreground, background, tile, stipple, tile-
stipple-origin, function, plane-mask, fill-style, fill-rule, subwindow-mode, clip-origin, and
clip-mask.

For each arc, XFillArc or XFillArcs fills the region closed by the infinitely thin path
described by the specified arc and, depending on the arc-mode specified in the GC, one or
two line segments. For ArcChord, the single line segment joining the endpoints of the arc
is used. For ArcPieSlice, the two line segments joining the endpoints of the arc with the
center point are used. XFillArcs fills the arcs in the same order as the list. For any given
arc, XFillArc and XFillArcs do not draw a pixel more than once. If regions intersect,
the intersecting pixels are drawn multiple times.

Both functions use these GC components: foreground, background, tile, stipple, tile-
stipple-origin, function, plane-mask, fill-style, arc-mode, subwindow-mode, clip-origin, and
clip-mask.

2.6 Exceptions

2.6.1 Range

Types:
exception Range

Description:

Range is raised when an argument to a function is not inside the allowable range of values.
There are many restricted ranges for function arguments. In brief:

x and y coordinates must lie between ~32768 and 32767 inclusive, width and height values
must be between 0 and 65535 inclusive.

This means that Rect {top,left,bottom,right} must have right >= left and
bottom >= top . Similarly, Area {x,y,w,h} must havew >= Oandh >= 0.

Where an XRectangle is used to pass width and height values only, the x and y members
must both be 0.

2.6.2 XWindows
Types:

exception XWindows of string

Arguments:
”Display not connected” Attempt to use X functions with no dis-
play connected.
”Non-existant resource” Attempt to use a resource value from a

previous session.

52 X Reference 1.1 ©Abstract Hardware Ltd 1991,1994

”Not a window”

”Not a pixmap”

”Handler mismatch”

”<functionName> failed”

”Bad<className> in <functionName>”

Description:

Attempt to use a pixmap Drawable as
a window

Attempt to use a window Drawable as
a pixmap

Attempt to send a message to a window
handler when the window has had a new
handler installed with XSetHandler.

Xlib detected an error condition when
executing <functionName>

The X server detected an error con-
dition occurred when executing <func-
tionName>. This is only reported
when running synchronously. For exam-
ple, "BadMatch in XChangeWindowAt-
tributes” .

exception XWindows is raised when an Xlib function returns an error condition.

2.7 Event Handling

2.7.1 IsCursorKey, IsFunctionKey, IsKeypadKey,
IsMiscFunctionKey, IsModifierKey, IsPFKey

Types:
val IsCursorKey: int -> bool
val IsFunctionKey: int -> bool
val IsKeypadKey: int -> bool
val IsMiscFunctionKey: int -> bool
val IsModifierKey: int -> bool
val IsPFKey: int -> bool

Description:

The IsCursorKey function returns true if the specified KeySym is a cursor key.

The IsFunctionKey function returns true if the KeySym is a function key.

The IsKeypadKey function returns true if the specified KeySym is a keypad key.

The IsMiscFunctionKey function returns true if the specified KeySym is a miscellaneous

function key.

The IsModifierKey function returns true if the specified KeySym is a modifier key.

The IsPFKey function returns true if the specified KeySym is a PF key.

2.7.2 ShiftDown, ControlDown

Types:

@©Abstract Hardware Ltd 1991,199, X Reference 1.1 53

val ShiftDown: Modifier list -> bool
val ControlDown: Modifier list -> bool

Syntax:

ShiftDown modifiers
ControlDown modifiers

Arguments:
modifiers Specifies the modifiers from a key event

Description:

The ShiftDown convenience function returns true if ShiftMask is in the modifiers list,
and false otherwise. This indicates if the Shift key was pressed when the key event was
generated.

The ControlDown convenience function returns true if ControlMask is in the modifiers
list, and false otherwise. This indicates if the Control key was pressed when the key event
was generated.

2.7.3 XLookupString, NoSymbol

Types:

val XLookupString: int -> Modifier list -> (string * int)
val NoSymbol: int

Syntax:

val (string,keysym) = XLookupString keycode modifiers ;

Arguments:
keycode Specifies the keycode from a key event
modifiers Specifies the modifiers from a key event
string Returns the string for that combination
keysym Returns the keysym for that combination
Description:

The XLookupString function translates a key event to a KeySym and a string. The
KeySym is obtained by using the standard interpretation of the Shift, Lock, and group
modifiers as defined in the X Protocol specification. If the KeySym has been rebound, the
bound string will be returned. Otherwise, the KeySym is mapped, if possible, to an ISO
Latin-1 character or (if the Control modifier is on) to an ASCII control character, and
that character is returned. If no KeySym is defined for keycode, the KeySym returned is
NoSymbol.

54 X Reference 1.1 ©Abstract Hardware Ltd 1991,1994

2.7.4 XSelectInput

Types:
val XSelectInput: Drawable -> EventMask list -> unit
Syntax:

XSelectInput w events ;

Arguments:
events Specifies the list of events you wish to handle.
w Specifies the window.

Argument Type:

datatype EventMask = KeyPressMask | KeyReleaseMask
| ButtonPressMask | ButtonReleaseMask
| EnterWindowMask | LeaveWindowMask
| PointerMotionMask | PointerMotionHintMask
| ButtonlMotionMask | Button2MotionMask
| Button3MotionMask | Button4MotionMask
| Buttonb5MotionMask | ButtonMotionMask
| KeymapStateMask | ExposureMask
| VisibilityChangeMask | StructureNotifyMask
| ResizeRedirectMask | SubstructureNotifyMask
| SubstructureRedirectMask | FocusChangeMask
| PropertyChangeMask | ColormapChangeMask
| OwnerGrabButtonMask | ButtonClickMask

Description:

The XSelectInput function requests that the X server report the events associated with
the specified event mask. Initially, X will not report any of these events. Events are
reported relative to a window. If a window is not interested in a device event, it usually
propagates to the closest ancestor that is interested, unless the doNotPropagate attribute
prohibits it.

Setting the event-mask attribute of a window overrides any previous call for the same

window but not for other clients. Multiple clients can select for the same events on the
same window with the following restrictions:

Multiple clients can select events on the same window because their event masks are
disjoint. When the X server generates an event, it reports it to all interested clients.
Only one client at a time can select CirculateRequest, ConfigureRequest, or
MapRequest events, which are associated with the event mask SubstructureRedi-
rectMask.

Only one client at a time can select a ResizeRequest event, which is associated with
the event mask ResizeRedirectMask.

Only one client at a time can select a ButtonPress event, which is associated with
the event mask ButtonPressMask.

The server reports the event to all interested clients.

@©Abstract Hardware Ltd 1991,199, X Reference 1.1 55

2.7.5 XSetHandler, NullHandler
Types:

val XSetHandler: Drawable ->
(’a XEvent * ’state -> ’state) -> ’state -> (int -> ’a -> unit)

val NullHandler: ’a XEvent * ’state —-> ’state
Syntax:

val sender = XSetHandler w Handler initialState ;

sender delay message ;

Arguments:
w Specifies the window.
Handler Specifies the event handling function.
initialState Specifies the initial state.
sender Returns a function that can send a strongly typed message to the win-
dow at any specified time in the future.
delay Specifies a delay in milliseconds before the message is sent.
message Specifies the message value. The type of the message matches the type
of the XEvent processed by the event handling function.
Description:

When a window is created it is initially unhandled. It can be used for drawing on, but it
will not process any events. An ML function can then be registered for that window, and
an initial value supplied. The registered function will transform the value to a new value
every time an event arrives for that window. In other words, a functional state machine
is set up for each window. We also implement strongly typed message passing between
windows, and millisecond-resolution timer events.

XSetHandler installs a new event handling function for a window. Event handlers typ-
ically pattern-match on the XEvent members, choosing to match events that they are
interested in, and then finish off with a default pattern match to provide a default action
for all other events. For example:

fun Handler (Expose {window,region,...},state) = ...

| Handler (EnterNotify {window,...},state)
| Handler (LeaveNotify {window,...l},state)

| Handler (MotionNotify {window,pointer,...},state) = ...

| Handler (_,state) = state ; (* default is to do nothing *)

Underneath, we have a process that maintains a current state and an event handler for
every window, and manages the events from the X server. As each event arrives it applies
the handler for that window to the event and the current state, which returns a new
state, which replaces the original state. Because only one process handles the events,

56

X Reference 1.1 ©Abstract Hardware Ltd 1991,1994

we guarantee that no other handler function can run at the same time. If the handler
function raises an exception, instead of returning a new state, then the current state is
left unchanged, and the exception is reported at the terminal. In this way all events are
handled in turn in a predictable order, and in much the same way that other X toolkits
work. The Poly /ML top level shell process is still available for debugging and control.

If a window has an operation that takes a long time to complete, then the programmer
can use Poly/ML processes to do the computations ’in the background’ and ’send’ the
result as a message to the window for display. However, the use of processes in this way is
discouraged as they are not standard.

If a window function loops, then all other windows will freeze. Since the Poly/ML top
level shell is available the user can type ~C followed by ’f’ to raise Interrupt in that window
function.

The function returned by XSetHandler can be used to send messages to this window,
if messages are not required then this function can be ignored. The message value will
be wrapped up in a Message XEvent and passed to the event handling function, the
type of the message value is guaranteed match the type of XEvent handled by the event
handler. The time the message arrives can be modified using the delay parameter, which
is the delay in milliseconds. This is often useful for implementing flashing displays, or
auto-repeat functions.

2.7.6 XSetInputFocus, XGetInputFocus

Types:

val XSetInputFocus: Drawable -> RevertCode -> int -> unit
val XGetInputFocus: unit -> (Drawable * RevertCode)

Syntax:

XSetInputFocus focus revertTo time ;
val (focus,revertTo) = XGetInputFocus() ;

Arguments:
focus Specifies or returns the window, PointerRoot, or NoDrawable.
revertTo Specifies or returns where the input focus reverts to if the window becomes
not viewable. You can pass RevertToParent, RevertToPointerRoot,
or RevertToNone.
time Specifies the time. You can pass either a timestamp or CurrentTime.

Argument Type:

datatype RevertCode = RevertToParent | RevertToPointerRoot | RevertToNone

val CurrentTime: int

Description:

The XSetInputFocus function changes the input focus and the last-focus-change time. It
has no effect if the specified time is earlier than the current last-focus-change time or is later

@©Abstract Hardware Ltd 1991,199, X Reference 1.1

57

than the current X server time. Otherwise, the last-focus-change time is set to the specified
time (CurrentTime is replaced by the current X server time). XSetInputFocus causes

the X server to generate FocusIn and FocusOut events.

Depending on the focus argument, the following occurs:

If focus is NoDrawable, all keyboard events are discarded until a new focus window
is set, and the revertTo argument is ignored.

If focus is a window, it becomes the keyboard’s focus window. If a generated keyboard
event would normally be reported to this window or one of its inferiors, the event is
reported as usual. Otherwise, the event is reported relative to the focus window.

If focus is PointerRoot, the focus window is dynamically taken to be the root window
of whatever screen the pointer is on at each keyboard event. In this case, the revertTo
argument is ignored.

The specified focus window must be viewable at the time XSetInputFocus is called, or
a BadMatch error results. If the focus window later becomes not viewable, the X server

evaluates the revertTo argument to determine the new focus window as follows:

If revertTo is RevertToParent, the focus reverts to the parent (or the closest view-
able ancestor), and the new revertTo value is taken to be RevertToNone.

If revertTo is RevertToPointerRoot or RevertToNone, the focus reverts to
PointerRoot or NoDrawable, respectively. When the focus reverts, the X server
generates FocusIn and FocusOut events, but the last-focus-change time is not af-

fected.

The XGetInputFocus function returns the focus window and the current focus state.

2.7.7 XSync, XFlush

Types:

val XSync: bool -> unit
val XFlush: unit -> unit

Syntax:

XSync discard ;

XFlush() ;
Arguments:
discard Specifies a bool that indicates whether XSync discards all events on the
event queue.
Description:

The XSync function flushes the output buffer and then waits until all requests have been
received and processed by the X server. Any errors generated must be handled by the
error handler. For each error event received by Xlib, XSync calls the client application’s

58 X Reference 1.1 ©Abstract Hardware Ltd 1991,1994

error handling routine. Any events generated by the server are enqueued into the library’s
event queue.

If you passed false, XSync does not discard the events in the queue. If you passed true,
XSync discards all events in the queue, including those events that were on the queue
before XSync was called. Client applications seldom need to call XSync.

The XFlush function flushes the output buffer. Most client applications need not use this
function because the output buffer is automatically flushed internally as events are read.

2.7.8 XSyncronise, XSynchronize
Types:

val XSyncronise: int -> unit
Syntax:

XSyncronise flag ;

Arguments:
flag Specifies that synchronization is enabled or disabled

Description:

If flag is non-zero, XSynchronize turns on synchronous behavior. If flag is zero, XSynchro-
nize turns off synchronous behavior.

NOTE that the current release has XSynchronize misspelled as XSyncronise.

2.7.9 XTranslateCoordinates
Types:

val XTranslateCoordinates: Drawable -> Drawable -> XPoint -> XPoint * Drawable
Syntax:

val (dstPoint,child) = XTranslateCoordinates srcWindow destWindow srcPoint ;

Arguments:
srcWindow Specifies the source window.
destWindow Specifies the destination window.
srcPoint Specifies the x and y coordinates within the source window
dstPoint Return the x and y coordinates within the destination window
child Returns the child if the coordinates are contained in a mapped child

of the destination window.

@©Abstract Hardware Ltd 1991,199, X Reference 1.1 59

Description:

The XTranslateCoordinates function takes the srcPoint coordinates relative to the
source window’s origin and returns these coordinates to dstPoint relative to the desti-
nation window’s origin. If XTranslateCoordinates returns zero, srcWindow and dest-
Window are on different screens, and dstPoint is (0,0). If the coordinates are contained in
a mapped child of destWindow, that child is returned as child. Otherwise, child has the
value NoDrawable.

2.8 Fonts

2.8.1 CharLBearing, CharRBearing, CharWidth, CharAscent,
CharDescent, CharAttributes

Types:
val CharLBearing: XCharStruct -> int
val CharRBearing: XCharStruct -> int
val CharWidth: XCharStruct -> int
val CharAscent: XCharStruct -> int
val CharDescent: XCharStruct -> int
val CharAttributes: XCharStruct -> int

Argument Type:

datatype XCharStruct = XCharStruct of { lbearing: int,
rbearing: int,
width: int,
ascent: int,
descent: int,
attributes: int }

Description:

These convenience functions return the individual fields of the XCharStruct datatype.

2.8.2 FSFont, FSDirection, FSMinChar, FSMaxChar, FSMinBytel,
FSMaxBytel, FSAllICharsExist, FSAllCharsExist,
FSDefaultChar, FSMinBounds, FSMaxBounds, PSPerChar,
FSPerChar, FSAscent, FSDescent, FSAscent, FSDescent,
FSMinWidth, FSMaxWidth, FSMinHeight, FSMaxHeight

Types:
val FSFont: XFontStruct -> Font
val FSDirection: XFontStruct -> FontDirection
val FSMinChar: XFontStruct -> int
val FSMaxChar: XFontStruct -> int
val FSMinBytel: XFontStruct -> int
val FSMaxBytel: XFontStruct -> int

60

X Reference 1.1

©Abstract Hardware Ltd 1991,1994

val FSAllCharsExist: XFontStruct -> bool

val FSDefaultChar: XFontStruct -> int

val FSMinBounds: XFontStruct -> XCharStruct
val FSMaxBounds: XFontStruct -> XCharStruct
val PSPerChar: XFontStruct -> XCharStruct list
val FSAscent: XFontStruct -> int

val FSDescent: XFontStruct -> int

val FSMinWidth: XFontStruct -> int

val FSMaxWidth: XFontStruct -> int

val FSMinHeight: XFontStruct -> int

val FSMaxHeight: XFontStruct -> int

Argument Type:

datatype XFontStruct = XFontStruct of { font: Font,
direction: FontDirection,
minChar: int,
maxChar: int,
minBytel: int,
maxBytel: int,
allCharsExist: bool,
defaultChar: int,
minBounds: XCharStruct,
maxBounds: XCharStruct,
perChar: XCharStruct list,
ascent: int,
descent: int }

Description:
These convenience functions return the individual fields of the XFontStruct datatype.
NOTE that the current release has FSPerChar misspelled as PSPerChar.
FSMinWidth, FSMaxWidth, FSMinHeight and FSMaxHeight are defined as:

fun FSMinWidth f = CharWidth (FSMinBounds f) ;
fun FSMaxWidth f = CharWidth (FSMaxBounds f) ;
fun FSMinHeight f = CharAscent (FSMinBounds f) + CharDescent (FSMinBounds f) ;
fun FSMaxHeight f = CharAscent (FSMaxBounds f) + CharDescent (FSMaxBounds f) ;

2.8.3 XListFonts, XListFontsWithInfo

Types:

val XListFonts: string -> int -> string list
val XListFontsWithInfo: string -> int -> (string list * XFontStruct list)

Syntax:

val names = XListFonts pattern maxNames ;
val (names,fonts) = XListFontsWithInfo pattern maxNames ;

@©Abstract Hardware Ltd 1991,199, X Reference 1.1 61

Arguments:
pattern Specifies the pattern string that can contain wildcard characters.
maxNames Specifies the maximum number of names to be returned.
names Specifies the list of font names returned.
fonts Specifies the list of font structures returned.
Description:

The XListFonts function returns a list of available font names (as controlled by the
font search path; see XSetFontPath) that match the string you passed to the pattern
argument. The string should be ISO Latin-1; uppercase and lowercase do not matter.
The pattern string can contain any characters, but each asterisk ”*” is a wildcard for any
number of characters, and each question mark ”7” is a wildcard for a single character. The
list of names is limited to size specified by maxNames. If XListFonts fails then exception
XWindows is raised with " XListFonts failed” .

The XListFontsWithInfo function returns a list of font names that match the specified
pattern and their associated font information. The list of names is limited to size speci-
fied by maxNames. The information returned for each font is identical to what XLoad-
QueryFont would return except that the per-character metrics are not returned. The
pattern string can contain any characters, but each asterisk ”*” is a wildcard for any
number of characters, and each question mark ”?” is a wildcard for a single character. If
XListFontsWithInfo fails then exception XWindows is raised with ” XListFontsWith-
Info failed” .

2.8.4 XLoadFont, XLoadQueryFont, XQueryFont, XFreeFont,

XUnloadFont

Types:
val XLoadFont: string -> Font
val XLoadQueryFont: string -> XFontStruct
val XQueryFont: Font -> XFontStruct
val XFreeFont: XFontStruct -> unit
val XUnloadFont: Font -> unit

Syntax:

val font = XLoadFont name ;
val fs = XLoadQueryFont name ;
val fs = XQueryFont font ;
XFreeFont fs ;

XUnloadFont font ;

Arguments:
font Specifies the font identifier.
fs Specifies the font structure.
name Specifies the name of the font.

Argument Type:

62 X Reference 1.1 ©Abstract Hardware Ltd 1991,1994

datatype FontDirection = FontLeftToRight | FontRightToLeft

datatype XCharStruct = XCharStruct of { lbearing: int,

rbearing: int,
width: int,
ascent: int,
descent: int,

attributes: int }

datatype XFontStruct = XFontStruct of { font: Font,
direction: FontDirection,
minChar: int,
maxChar: int,
minBytel: int,
maxBytel: int,

allCharsExist: bool,
defaultChar: int,

minBounds: XCharStruct,
maxBounds: XCharStruct,
perChar: XCharStruct list,
ascent: int,

descent: int }

Argument Description:

The XFontStruct structure contains all of the information for the font and consists of the
font-specific information as well as a list of XCharStruct structures for the characters
contained in the font.

X supports single byte/character, two bytes/character matrix, and 16-bit character text op-
erations. Note that any of these forms can be used with a font, but a single byte/character
text request can only specify a single byte (that is, the first row of a 2-byte font). You
should view 2-byte fonts as a two-dimensional matrix of defined characters: byte 1 specifies
the range of defined rows and byte 2 defines the range of defined columns of the font. Single
byte/character fonts have one row defined, and the byte 2 range specified in the structure
defines a range of characters.

The bounding box of a character is defined by the XCharStruct of that character. When
characters are absent from a font, the defaultChar is used. When fonts have all characters
of the same size, only the information in the XFontStruct min and max bounds are used.

The members of the XFontStruct have the following semantics:

The direction member can be either FontLeftToRight or FontRightToLeft. It is
just a hint as to whether most XCharStruct elements have a positive (FontLeft-
ToRight) or a negative (FontRightToLeft) character width metric. The core pro-
tocol defines no support for vertical text.

If the minBytel and maxBytel members are both zero, minChar specifies the linear
character index corresponding to the first element of the perChar list, and maxChar
specifies the linear character index of the last element.

If either minBytel or maxBytel are non-zero, then both minChar and maxChar are
less than 256, and the 2-byte character index values corresponding to the perChar
list element N (counting from 0) are:

byte 1
byte 2

N div D + minBytel
N mod D + minChar

@©Abstract Hardware Ltd 1991,199, X Reference 1.1 63

If the perChar list is empty, all glyphs between the first and last character indexes
inclusive have the same information, as given by both minBounds and maxBounds.
If allCharsExist is true, all characters in the perChar list have non-zero bounding
boxes.

The defaultChar member specifies the character that will be used when an undefined
or nonexistent character is printed. The defaultChar is a 16-bit character (not a 2-
byte character). For a font using 2-byte matrix format, the defaultChar has byte 1 in
the most-significant byte and byte 2 in the least-significant byte. If the defaultChar
itself specifies an undefined or nonexistent character, no printing is performed for an
undefined or nonexistent character.

The minBounds and maxBounds members contain the most extreme values of
each individual XCharStruct component over all elements of this list (and ig-
nore nonexistent characters). The bounding box of the font (the smallest rect-
angle enclosing the shape obtained by superimposing all of the characters at
the same origin (x,y)) has its upper-left coordinate at (x+minBounds.lbearing,y-
maxBounds.ascent). Its width is (maxBounds.rbearing-minBounds.lbearing) and its
height is (maxBounds.ascent+maxBounds.descent).

The ascent member is the logical extent of the font above the baseline that is used
for determining line spacing. Specific characters may extend beyond this.

The descent member is the logical extent of the font at or below the baseline that is
used for determining line spacing. Specific characters may extend beyond this.

If the baseline is at Y-coordinate y, the logical extent of the font is inclusive be-
tween the Y-coordinate values (y-font.ascent) and (y+font.descent-1). Typically, the
minimum interline spacing between rows of text is given by (ascent+descent).

For a character origin at (x,y), the bounding box of a character (that is, the smallest
rectangle that encloses the character’s shape) described in terms of XCharStruct com-
ponents is a rectangle with its upper-left corner at (x+lbearing,y-ascent). Its width is
(rbearing-lbearing) and its height is (ascent+descent). The origin for the next character is
defined to be (x+width,y) The lbearing member defines the extent of the left edge of the
character ink from the origin. The rbearing member defines the extent of the right edge of
the character ink from the origin. The ascent member defines the extent of the top edge of
the character ink from the origin. The descent member defines the extent of the bottom
edge of the character ink from the origin. The width member defines the logical width of
the character.

Description:

The XLoadFont function loads the specified font and returns the Font value for it.
The name should be ISO Latin-1 encoding; uppercase and lowercase do not matter. The
interpretation of characters ”?” and ”*” in the name is not defined by the core protocol but
is reserved for future definition. A structured format for font names is specified in the X
Consortium standard X Logical Font Description Conventions. If the font does not exist
then exception XWindows is raised with ”XLoadFont failed” . Fonts are not associated
with a particular screen and can be stored as a component of any GC. When the font is
no longer needed, call XUnloadFont.

The XQueryFont function returns an XFontStruct structure, which contains informa-
tion associated with the font. If XQueryFont fails then exception XWindows is raised
with ”XQueryFont failed” .

The XLoadQueryFont function provides the most common way for accessing a font.
XLoadQueryFont both opens (loads) the specified font and returns the appropriate

64

X Reference 1.1 ©Abstract Hardware Ltd 1991,1994

XFontStruct structure. If the font does not exist then exception XWindows is raised
with ”XLoadQueryFont failed” .

The XFreeFont function deletes the association between the Font value in the
XFontStruct and the specified font in the server. The font itself will be freed when
no other resource references it. The XFontStruct and the font should not be referenced
again.

The XUnloadFont function deletes the association between the Font value and the spec-
ified font in the server. The font itself will be freed when no other resource references it.
The font should not be referenced again.

2.8.5 XSetFontPath, XGetFontPath

Types:

val XSetFontPath: string list -> unit
val XGetFontPath: unit -> string list

Syntax:

XSetFontPath directories ;
val directories = XGetFontPath() ;

Arguments:
directories Specifies the directory path used to look for a font. Setting the path to
the empty list restores the default path defined for the X server.
Description:

The XSetFontPath function defines the directory search path for font lookup. There is
only one search path per X server, not one per client. The interpretation of the strings is
operating system dependent, but they are intended to specify directories to be searched in
the order listed. Also, the contents of these strings are operating system dependent and are
not intended to be used by client applications. Usually, the X server is free to cache font
information internally rather than having to read fonts from files. In addition, the X server
is guaranteed to flush all cached information about fonts which are currently referenced by
an application. The meaning of an error from this request is operating system dependent.

The XGetFontPath function returns a list of strings containing the search path. If
XGetFontPath fails then exception XWindows is raised with ”XGetFontPath failed” .

2.8.6 XTextExtents, XTextExtents16

Types:

val XTextExtents: XFontStruct ->
string -> (FontDirection * int * int * XCharStruct)

val XTextExtents16: XFontStruct ->
int list -> (FontDirection * int * int * XCharStruct)

@©Abstract Hardware Ltd 1991,199, X Reference 1.1 65

Syntax:

val (direction,ascent,descent,overall) = XTextExtents fs string ;
val (direction,ascent,descent,overall) XTextExtents16 fs bigChars ;

Arguments:
direction Returns the value of the direction hint (FontLeft ToRight or FontRight-
ToLeft).
fs Specifies the XFontStruct to use.
ascent Returns the font ascent.
descent Returns the font descent.
string Specifies the character string.
bigChars Specifies the character string as a list of 16 bit integers.
overall Returns the overall size in a XCharStruct structure.
Description:

The XTextExtents and XTextExtents16 functions perform the size computation lo-
cally using the XFontStruct provided. Both functions return an XCharStruct structure,
whose members are set to the values as follows.

The ascent member is set to the maximum of the ascent metrics of all characters in the
string. The descent member is set to the maximum of the descent metrics. The width
member is set to the sum of the character-width metrics of all characters in the string.
For each character in the string, let W be the sum of the character-width metrics of all
characters preceding it in the string. Let L be the left-side-bearing metric of the character
plus W. Let R be the right-side-bearing metric of the character plus W. The lbearing
member is set to the minimum L of all characters in the string. The rbearing member is
set to the maximum R.

For fonts defined with 2-byte matrix indexing rather than 16-bit linear indexing, the most-
significant 8-bits of each int in bigChars is used as byte 1, and the least-significant 8-bits
is used as byte 2.

If the font has no defined default character, undefined characters in the string are taken
to have all zero metrics.

Characters with all zero metrics are ignored. If the font has no defined defaultChar, the
undefined characters in the string are also ignored.

2.8.7 XTextWidth, XTextWidthl6
Types:

val XTextWidth: XFontStruct -> string -> int
val XTextWidth1l6: XFontStruct -> int list -> int

Syntax:
val width = XTextWidth fs string ;
val width = XTextWidth16 fs bigChars ;

66 X Reference 1.1 ©Abstract Hardware Ltd 1991,1994

Arguments:
fs Specifies the XFontStruct to use.
string Specifies the character string.
bigChars Specifies the character string as a list of 16 bit integers.
width Returns the width in pixels.
Description:

The XTextWidth and XTextWidth16 functions return the width of the specified 8-bit
or 2-byte character strings.

2.9 Geometry

2.9.1 AddPoint, SubtractPoint

Types:
infix AddPoint SubtractPoint
val AddPoint: (XPoint * XPoint) -> XPoint
val SubtractPoint: (XPoint * XPoint) -> XPoint
Description:

AddPoint takes two points and adds the x coordinates together and the y coordinates
together to make the resulting point. In vector arithmetic this is equivalent to adding two
vectors.

SubtractPoint subtracts the x coordinate of the second point from the x coordinate of
the first, and subtracts the y coordinate of the second point from the y coordinate of the
first. In vector arithmetic this is equivalent to vector subtraction.

2.9.2 Inside, Overlap, Within, LeftOf, RightOf, AboveOf, BelowOf,
Horizontally Abutting, VerticallyAbutting

Types:

infix Inside Overlap Within
infix Left0f Right0f AboveOf BelowOf
infix HorizontallyAbutting VerticallyAbutting

val Inside: (XRectangle * XRectangle) -> bool
val Overlap: (XRectangle * XRectangle) -> bool
val Within: (XPoint * XRectangle) -> bool
val Left0f: (XPoint * XRectangle) -> bool
val RightOf: (XPoint * XRectangle) -> bool
val AboveOf: (XPoint * XRectangle) -> bool
val BelowOf: (XPoint * XRectangle) -> bool

val HorizontallyAbutting: (XRectangle * XRectangle) -> bool
val VerticallyAbutting: (XRectangle * XRectangle) -> bool

@©Abstract Hardware Ltd 1991,199, X Reference 1.1 67

Description:

a Inside b is true if rectangle a is totally enclosed by b.

)

Overlap b is true if the two rectangles intersect.

Within b is true if point a is inside rectangle b.

P

LeftOf b is true if point a is outside and to the left of rectangle b.
Right0f b is true if point a is outside and to the right of rectangle b.

[]

AboveOf b is true if point a is outside and above rectangle b.

v

a BelowOf D is true if point a is outside and below rectangle b.

a HorizontallyAbutting b is true if the left edge of a touches the right edge of b, or the
right edge of a touches the left edge of b.

a VerticallyAbutting b is true if the top edge of a touches the bottom edge of b, or the
bottom edge of a touches the top edge of b.

2.9.3 Intersection, Union, Section

Types:

val Intersection: XRectangle -> XRectangle -> Section
val Union: XRectangle -> XRectangle -> XRectangle

Argument Type:
datatype Section = Nothing | Section of XRectangle

Description:

Intersection computes the intersection of the two rectangles. If the rectangles do not
intersect then it returns Nothing, otherwise it returns Section of the intersection.

Union computes the bounding rectangle for the union of the two rectangles.

2.9.4 Left, Right, Top, Bottom, Width, Height, TopLeft, TopRight,
BottomLeft, BottomRight, XRectangle, Area, Rect,
DestructRect, Destruct Area, empty

Types:

eqtype XRectangle

val Rect: {left:int,right:int,top:int,bottom:int} -> XRectangle
val Area: {x:int,y:int,w:int,h:int} -> XRectangle

val DestructRect: XRectangle -> {left:int,right:int,top:int,bottom:int}
val DestructArea: XRectangle -> {x:int,y:int,w:int,h:int}

exception XRectangle of {top:int,left:int,bottom:int,right:int}

val Left: XRectangle -> int

68 X Reference 1.1 ©Abstract Hardware Ltd 1991,1994
val Right: XRectangle -> int
val Top: XRectangle -> int
val Bottom: XRectangle -> int
val Width: XRectangle -> int
val Height: XRectangle -> int
val TopLeft: XRectangle -> XPoint
val TopRight: XRectangle -> XPoint
val BottomLeft: XRectangle -> XPoint
val BottomRight: XRectangle -> XPoint
val empty = Area {x=0,y=0,w=0,h=0}
Syntax:
val area = Area { x = 0, y = 0, w = 100, h = 200 } ;
val {x,y,w,h} = DestructArea area ;
val left = Left area ;
Description:

XRectangles are used to represent pixel areas. For example, an Expose event on a window
will contain the position and size of the rectangular area which needs refreshing. XRect-
angles may also represent size only. For example, the coordinate system of a window is
represented as an XRectangle which has width and height, but the top left corner of the
rectangle is at (0,0).

XRectangles representing pixel areas can be thought of in two ways.

The first way is to call the top left pixel in the rectangle (x,y) and the width and
height of the rectangle are (width,height) . Then, an empty rectangle has width = 0
and height = 0 , and the point (a,b) is in a non-empty rectangle only if a >= x and
a < (x+width) and b >= y and b < (y+height) .

The second way is to call the top left pixel inside the area (top,left) and to call
the outside bottom right pixel (bottom,right) . Then, the empty rectangle has
(top,left) = (bottom,right) , and the point (x,y) is in a non-empty rectangle if
x >= left and x < right and y >= top and y < bottom . NOTE that in X, y coordi-
nates increase down the screen, so top <= bottom .

You should be careful not to generate coordinates out of range. x and y coordinates must
lie between ~32768 and 32767 inclusive, width and height values must be between 0 and
65535 inclusive.

This means that Rect {top,left,bottom,right} must have right >= left and
bottom >= top . Similarly, Area {x,y,w,h} must have w >= 0 and h >= 0 . If these
constraints are not met then exception XRectangle is raised.

Convenience functions exist to destruct XRectangles. Left, Right, Top and Bottom
return the single coordinate for an edge of an XRectangle. Width and Height re-
turn the width and height of an XRectangle. TopLeft, TopRight, BottomLeft and
BottomRight return the coordinates of a corner of an XRectangle as points.

empty is a rectangle with zero area.

2.9.5 MakeRect, SplitRect

Types:

@©Abstract Hardware Ltd 1991,199, X Reference 1.1 69

val MakeRect: XPoint -> XPoint -> XRectangle
val SplitRect: XRectangle -> (XPoint * XPoint)

Syntax:

val (topLeft,bottomRight) = SplitRect r ;
val r = MakeRect cornerl corner2 ;

Description:

MakeRect constructs an XRectangle given two points corresponding to any pair of
opposite corners of the rectangle. This is useful when the order of the two points is not
known, for example when dragging a rubber-banded box on the screen.

SplitRect returns the pair of points corresponding to the top-left and bottom-right corners
of the XRectangle. It will always be the case that 1left <= right and top <= bottom.

2.9.6 NegativePoint

Types:
val NegativePoint: XPoint -> XPoint

Description:

NegativePoint negates both the x and y coordinates of the point. This is equivalent to
reflecting about the x axis and the y axis.

2.9.7 OutsetRect, OffsetRect, IncludePoint

Types:

val OutsetRect: int -> XRectangle -> XRectangle
val OffsetRect: XRectangle -> XPoint -> XRectangle
val IncludePoint: XPoint -> XRectangle -> XRectangle

Description:

OutsetRect n R takes rectangle R and expands its area by n units in all four directions.
Typically n is positive and this function is used to expand areas to incorporate borders of
the same width all around. With a negative n it can be used to shrink an area towards
the centre of the area. If n is more negative than half the width or height of the area then
exception XRectangle is raised.

OffsetRect R (XPoint{x,y}) adds x to both x coordinates and y to both y coordinates
of R. This is typically used to move a rectangle by an (x,y) offset or vector.

IncludePoint p R is used to expand the area of R to include the point p. If p is already
inside the rectange R then R is returned unchanged. If p is outside the rectangle R then
R is expanded in the direction of p so that p is now just inside R.

70 X Reference 1.1 ©Abstract Hardware Ltd 1991,1994

2.9.8 Reflect
Types:
val Reflect: XRectangle -> XRectangle

Description:

Reflect takes an XRectangle and swaps the x and y coordinates over; left is swapped
with top and right is swapped with bottom. This is equivalent to reflecting the points
about the 45-degree line that has the equation y = x.

2.9.9 XPoint

Types:

datatype XPoint = XPoint of { x:int,y:int }

val origin = XPoint {x=0,y=0}
Syntax:
XPoint { x=100,y=200 }

Description:

XPoints are used to represent the coordinates of pixels. For example, the position of the
top left pixel of a window on the screen is represented as an XPoint.

You should be careful not to generate coordinates out of range. x and y coordinates must
lie between ~32768 and 32767 inclusive.

origin is the point (0,0), and is typically used to refer to the origin of the coordinate
system. In X, the origin is the top left corner of a window.

2.10 GC - Graphics Context

2.10.1 DefaultGC
Types:

val DefaultGC: unit -> GC
Syntax:

val gc = DefaultGC() ;

Description:

The DefaultGC function returns the default GC for the root window of the screen.

@©Abstract Hardware Ltd 1991,199, X Reference 1.1 71

2.10.2 XCreateGC, XChangeGC, XFreeGC
Types:

val XCreateGC: Drawable -> XGCValue list -> GC
val XChangeGC: GC -> XGCValue list -> unit
val XFreeGC: GC -> unit

Syntax:

val gc = XCreateGC d values ;
XChangeGC gc values ;

XFreeGC gc ;
Arguments:
d Specifies the drawable.
gc Specifies the GC.
values Specifies which components in the GC are to be set or changed.

Argument Type:

datatype XGCValue = GCFunction of GCFunction
| GCPlaneMask of int
| GCForeground of int
| GCBackground of int
| GCLineWidth of int
| GCLineStyle of GCLineStyle
| GCCapStyle of GCCapStyle
| GCJoinStyle of GCJoinStyle
| GCFillStyle of GCFillStyle
| GCFillRule of GCFillRule
| GCTile of Drawable
| GCStipple of Drawable
| GCTSOrigin of XPoint
| GCFont of Font
| GCSubwindowMode of GCSubwindowMode
| GCGraphicsExposures of bool
| GCClipOrigin of XPoint
| GCClipMask of Drawable
| GCDashOffset of int
| GCDashList of int
| GCArcMode of GCArcMode

Argument Description:

The GCFunction attributes of a GC are used when you update a section of a drawable
(the destination) with bits from somewhere else (the source). The function in a GC
defines how the new destination bits are to be computed from the source bits and the old
destination bits. GXcopy is typically the most useful because it will work on a colour
display, but special applications may use other functions, particularly in concert with
particular planes of a colour display. The 16 GC functions are:

72

X Reference 1.1 ©Abstract Hardware Ltd 1991,199/

datatype GCFunction = GXclear | GXand | GXandReverse | GXcopy
| GXandInverted | GXnoop | GXxor | GXor
| GXnor | GXequiv | GXinvert | GXorReverse
| GXcopyInverted | GXorInverted | GXnand | GXset

Many graphics operations depend on either pixel values or planes in a GC. The GC-
PlaneMask attribute is an int, and it specifies which planes of the destination are to be
modified, one bit per plane. A monochrome display has only one plane and will be the
least-significant bit of the word. As planes are added to the display hardware, they will
occupy more significant bits in the plane mask.

In graphics operations, given a source and destination pixel, the result is computed bitwise
on corresponding bits of the pixels. That is, a Boolean operation is performed in each bit
plane. The plane-mask restricts the operation to a subset of planes. The value AllPlanes
can be used to refer to all planes of the screen simultaneously. The result is computed by
the following;:

((src GC-FUNCTION dst) AND plane-mask) OR (dst AND (NOT plane-mask))

Range checking is not performed on the values for foreground, background, or plane-mask.
They are simply truncated to the appropriate number of bits. The line-width is measured
in pixels and either can be greater than or equal to one (wide line) or can be the special
value zero (thin line).

Wide lines are drawn centered on the path described by the graphics request. Unless
otherwise specified by the join-style or cap-style, the bounding box of a wide line with
endpoints (x1,y1), (x2,y2) and width w is a rectangle with vertices at the following real
coordinates:

(x1-(w*sn/2) ,y1+(w*cs/2)),
(x1+(w*sn/2) ,y1-(w*xcs/2)),
(x2-(wxsn/2) ,y2+(wxcs/2)),
(x2+(w*sn/2) ,y2- (wxcs/2))

Here sn is the sine of the angle of the line, and cs is the cosine of the angle of the line. A
pixel is part of the line and so is drawn if the center of the pixel is fully inside the bounding
box (which is viewed as having infinitely thin edges). If the center of the pixel is exactly
on the bounding box, it is part of the line if and only if the interior is immediately to its
right (x increasing direction). Pixels with centers on a horizontal edge are a special case
and are part of the line if and only if the interior or the boundary is immediately below
(y increasing direction) and the interior or the boundary is immediately to the right (x
increasing direction).

Thin lines (zero line-width) are one-pixel-wide lines drawn using an unspecified, device-
dependent algorithm. There are only two constraints on this algorithm.

If a line is drawn unclipped from (x1,y1) to (x2,y2) and if another line is drawn unclipped
from (x14+dx,yl4+dy) to (x24+dx,y2+dy), a point (x,y) is touched by drawing the first line
if and only if the point (x+dx,y+dy) is touched by drawing the second line.

The effective set of points comprising a line cannot be affected by clipping. That is, a
point is touched in a clipped line if and only if the point lies inside the clipping region and
the point would be touched by the line when drawn unclipped.

A wide line drawn from (x1,y1) to (x2,y2) always draws the same pixels as a wide line
drawn from (x2,y2) to (x1,y1), not counting cap-style and join-style. It is recommended
that this property be true for thin lines, but this is not required. A line-width of zero may
differ from a line-width of one in which pixels are drawn. This permits the use of many

@©Abstract Hardware Ltd 1991,199, X Reference 1.1 73

manufacturers’ line drawing hardware, which may run many times faster than the more
precisely specified wide lines.

In general, drawing a thin line will be faster than drawing a wide line of width one. How-
ever, because of their different drawing algorithms, thin lines may not mix well aesthetically
with wide lines. If it is desirable to obtain precise and uniform results across all displays,
a client should always use a line-width of one rather than a line-width of zero.

datatype GCLineStyle = LineSolid | LineOnOffDash | LineDoubleDash

The line-style defines which sections of a line are drawn:

LineSolid The full path of the line is drawn.

LineDoubleDash The full path of the line is drawn, but the even dashes are filled
differently than the odd dashes (see fill-style) with CapButt style
used where even and odd dashes meet.

LineOnOffDash Only the even dashes are drawn, and cap-style applies to all inter-
nal ends of the individual dashes, except CapNotLast is treated
as CapButt.

datatype GCCapStyle = CapNotLast | CapButt | CapRound | CapProjecting

The cap-style defines how the endpoints of a path are drawn:
CapNotLast This is equivalent to CapButt except that for a line-width of zero
the final endpoint is not drawn.

CapButt The line is square at the endpoint (perpendicular to the slope of the
line) with no projection beyond.

CapRound The line has a circular arc with the diameter equal to the line-
width, centered on the endpoint. (This is equivalent to CapButt
for line-width of zero).

CapProjecting The line is square at the end, but the path continues beyond the
endpoint for a distance equal to half the line-width. (This is equiv-
alent to CapButt for line-width of zero).

datatype GCJoinStyle = JoinMiter | JoinRound | JoinBevel

The join-style defines how corners are drawn for wide lines:

JoinMiter The outer edges of two lines extend to meet at an angle. However, if the
angle is less than 11 degrees, then a JoinBevel join-style is used instead.

JoinRound The corner is a circular arc with the diameter equal to the line-width,
centered on the joinpoint.

JoinBevel The corner has CapButt endpoint styles with the triangular notch filled.

For a line with coincident endpoints (x1=x2,yl1=y2), when the cap-style is applied to both
endpoints, the semantics depends on the line-width and the cap-style:

74

X Reference 1.1 ©Abstract Hardware Ltd 1991,1994

CapNotLast thin The results are device-dependent, but the desired ef-
fect is that nothing is drawn.
CapButt thin The results are device-dependent, but the desired ef-
fect is that a single pixel is drawn.
CapRound thin The results are the same as for CapButt/thin.
CapProjecting thin The results are the same as for CapButt/thin.
CapButt wide nothing is drawn.
CapRound wide The closed path is a circle, centered at the endpoint,
and with the diameter equal to the line-width.
CapProjecting wide The closed path is a square, aligned with the coor-
dinate axes, centered at the endpoint, and with the
sides equal to the line-width.

For a line with coincident endpoints (x1=x2, yl=y2), when the join-style is applied at one
or both endpoints, the effect is as if the line was removed from the overall path. However,
if the total path consists of or is reduced to a single point joined with itself, the effect is
the same as when the cap-style is applied at both endpoints.

The tile/stipple and clip origins are interpreted relative to the origin of whatever destina-
tion drawable is specified in a graphics request. The tile pixmap must have the same root
and depth as the GC, or a BadMatch error results. The stipple pixmap must have depth
one and must have the same root as the GC, or a BadMatch error results. For stipple
operations where the fill-style is FillStippled but not FillOpaqueStippled, the stipple
pattern is tiled in a single plane and acts as an additional clip mask to be ANDed with
the clip-mask. Although some sizes may be faster to use than others, any size pixmap can
be used for tiling or stippling.

datatype GCFillStyle = FillSolid | FillTiled
| FillStippled | FillOpaqueStippled

The fill-style defines the contents of the source for line, text, and fill requests. For all text
and fill requests, for line requests with line-style LineSolid, and for the even dashes for line
requests with line-style LineOnOffDash or LineDoubleDash, the following apply:

FillSolid Foreground
FillTiled Tile
FillOpaqueStippled A tile with the same width and height as stipple, but with

background everywhere stipple has a zero and with foreground
everywhere stipple has a one

FillStippled Foreground masked by stipple

When drawing lines with line-style LineDoubleDash, the odd dashes are controlled by
the fill-style in the following manner:

FillSolid Background

FillTiled Same as for even dashes
FillOpaqueStippled Same as for even dashes
FillStippled Background masked by stipple

Storing a pixmap in a GC might or might not result in a copy being made. If the pixmap
is later used as the destination for a graphics request, the change might or might not be
reflected in the GC. If the pixmap is used simultaneously in a graphics request both as a
destination and as a tile or stipple, the results are undefined.

For optimum performance, you should draw as much as possible with the same GC (with-
out changing its components). The costs of changing GC components relative to using

@©Abstract Hardware Ltd 1991,199, X Reference 1.1 75

different GCs depend upon the display hardware and the server implementation. It is quite
likely that some amount of GC information will be cached in display hardware and that
such hardware can only cache a small number of GCs.

The dashes value is actually a simplified form of the more general patterns that can be set
with XSetDashes. Specifying a value of N is equivalent to specifying the two-element list
[N,N] in XSetDashes. The value must be non-zero, or a BadValue error results. The
value must be less than 256 or exception Range is raised.

The clip-mask restricts writes to the destination drawable. If the clip-mask is set to a
pixmap, it must have depth one and have the same root as the GC, or a BadMatch
error results. If clip-mask is set to NoDrawable, the pixels are always drawn regardless
of the clip origin. The clip-mask also can be set by calling the XSetClipRectangles or
XSetRegion functions. Only pixels where the clip-mask has a bit set to 1 are drawn. Pixels
are not drawn outside the area covered by the clip-mask or where the clip-mask has a bit
set to 0. The clip-mask affects all graphics requests. The clip-mask does not clip sources.
The clip-mask origin is interpreted relative to the origin of whatever destination drawable
is specified in a graphics request.

datatype GCSubwindowMode = ClipByChildren | IncludeInferiors

You can set the subwindow-mode to ClipByChildren or Includelnferiors. For Clip-
ByChildren, both source and destination windows are additionally clipped by all viewable
InputOutputClass children. For Includelnferiors, neither source nor destination win-
dow is clipped by inferiors. This will result in including subwindow contents in the source
and drawing through subwindow boundaries of the destination. The use of IncludelInfe-
riors on a window of one depth with mapped inferiors of differing depth is not illegal, but
the semantics are undefined by the core protocol.

datatype GCFillRule = EvenOddRule | WindingRule

The fill-rule defines what pixels are inside (drawn) for paths given in XFillPolygon re-
quests and can be set to EvenOddRule or WindingRule. For EvenOddRule, a point
is inside if an infinite ray with the point as origin crosses the path an odd number of times.
For WindingRule, a point is inside if an infinite ray with the point as origin crosses an
unequal number of clockwise and counterclockwise directed path segments. A clockwise
directed path segment is one that crosses the ray from left to right as observed from the
point. A counterclockwise segment is one that crosses the ray from right to left as ob-
served from the point. The case where a directed line segment is coincident with the ray
is uninteresting because you can simply choose a different ray that is not coincident with
a segment.

For both EvenOddRule and WindingRule, a point is infinitely small, and the path is
an infinitely thin line. A pixel is inside if the center point of the pixel is inside and the
center point is not on the boundary. If the center point is on the boundary, the pixel is
inside if and only if the polygon interior is immediately to its right (x increasing direction).
Pixels with centers on a horizontal edge are a special case and are inside if and only if the
polygon interior is immediately below (y increasing direction).

datatype GCArcMode = ArcChord | ArcPieSlice

The arc-mode controls filling in the XFillArcs function and can be set to ArcPieSlice
or ArcChord. For ArcPieSlice, the arcs are pie-slice filled. For ArcChord, the arcs
are chord filled.

The graphics-exposure flag controls GraphicsExpose event generation for XCopyArea
and XCopyPlane requests (and any similar requests defined by extensions).

76 X Reference 1.1 ©Abstract Hardware Ltd 1991,1994

Description:

The XCreateGC function creates a graphics context and returns a GC. The GC can
be used with any destination drawable having the same root and depth as the specified
drawable. Use with other drawables results in a BadMatch error.

The XChangeGC function changes the components specified by values for the specified
GC. The values argument contains the values to be set. The values and restrictions are the
same as for XCreateGC. Changing the clip-mask overrides any previous XSetClipRect-
angles request on the context. Changing the dash-offset or dash-list overrides any previous
XSetDashes request on the context. The order in which components are verified and al-
tered is server-dependent. If an error is generated, a subset of the components may have
been altered.

The XFreeGC function destroys the specified GC.

2.10.3 XSetArcMode

Types:
val XSetArcMode: GC -> GCArcMode -> unit
Syntax:

XSetArcMode gc mode ;

Arguments:
gc Specifies the GC.
mode Specifies the arc mode. You can pass ArcChord or ArcPieSlice.

Argument Type:
datatype GCArcMode = ArcChord | ArcPieSlice

Description:
The XSet ArcMode function sets the arc mode in the specified GC.

2.10.4 XSetBackground

Types:
val XSetBackground: GC -> int -> unit
Syntax:

XSetBackground gc background ;

Arguments:
background Specifies the background pixel.
gc Specifies the GC.
Description:

The XSetBackground function sets the background pixel in the specified GC.

@©Abstract Hardware Ltd 1991,199, X Reference 1.1

2.10.5 XSetClipMask
Types:

val XSetClipMask: GC -> Drawable -> unit
Syntax:

XSetClipMask gc pixmap ;

Arguments:

gc Specifies the GC.

pixmap Specifies the pixmap or NoDrawable.
Description:

7

The XSetClipMask function sets the clip-mask in the specified GC to the specified
pixmap. If the clip-mask is set to NoDrawable, the pixels are are always drawn (regardless

of the clip-origin).

2.10.6 XSetClipOrigin
Types:

val XSetClipOrigin: GC -> XPoint -> unit
Syntax:

XSetClipOrigin gc origin ;

Arguments:

gc Specifies the GC.

origin Specifies the x and y coordinates of the clip-mask origin.
Description:

The XSetClipOrigin function sets the clip origin in the specified GC. The clip-mask
origin is interpreted relative to the origin of whatever destination drawable is specified in

the graphics request.

2.10.7 XSetClipRectangles

Types:

val XSetClipRectangles: GC -> XPoint -> XRectangle list -> GCOrder -> unit

Syntax:

78 X Reference 1.1 ©Abstract Hardware Ltd 1991,1994
XSetClipRectangles gc origin rectangles ordering ;
Arguments:
gc Specifies the GC.
origin Specifies the x and y coordinates of the clip-mask origin.
rectangles Specifies a list of rectangles that define the clip-mask.
ordering Specifies the ordering relations on the rectangles. You can pass Un-

sorted, YSorted, YXSorted, or YXBanded.

Argument Type:

datatype GCOrder = Unsorted | YSorted | YXSorted | YXBanded

Description:

The XSetClipRectangles function changes the clip-mask in the specified GC to the
specified list of rectangles and sets the clip origin. The output is clipped to remain con-
tained within the rectangles. The clip-origin is interpreted relative to the origin of what-
ever destination drawable is specified in a graphics request. The rectangle coordinates are
interpreted relative to the clip-origin. The rectangles should be nonintersecting, or the
graphics results will be undefined. Note that the list of rectangles can be empty, which
effectively disables output. This is the opposite of passing NoDrawable as the clip-mask
in XCreateGC, XChangeGC, and XSetClipMask.

If known by the client, ordering relations on the rectangles can be specified with the
ordering argument. This may provide faster operation by the server. If an incorrect
ordering is specified, the X server may generate a BadMatch error, but it is not required
to do so. If no error is generated, the graphics results are undefined. Unsorted means the
rectangles are in arbitrary order. YSorted means that the rectangles are nondecreasing
in their Y origin. YXSorted additionally constrains YSorted order in that all rectangles
with an equal Y origin are nondecreasing in their X origin. YXBanded additionally
constrains YXSorted by requiring that, for every possible Y scanline, all rectangles that
include that scanline have an identical Y origins and Y extents.

2.10.8 XSetColours

Types:

val XSetColours: GC -> int -> int -> unit

Syntax:

XSetColours gc foreground background ;

Arguments:
background Specifies the background pixel.
foreground Specifies the foreground pixel.
gc Specifies the GC.
Description:

The XSetColours convenience function sets the foreground and background components
for the specified GC.

@©Abstract Hardware Ltd 1991,199, X Reference 1.1 79

2.10.9 XSetDashes
Types:

val XSetDashes: GC -> int -> int list -> unit
Syntax:

XSetDashes offset dashes ;

Arguments:
dashes Specifies the dash-list for the dashed line-style you want to set for the specified
GC.
offset Specifies the phase of the pattern for the dashed line-style you want to set
for the specified GC.
Description:

The XSetDashes function sets the dash-offset and dash-list attributes for dashed line
styles in the specified GC. There must be at least one element in the specified dash-list,
or a BadValue error results. The initial and alternating elements (second, fourth, and so
on) of the dash-list are the even dashes, and the others are the odd dashes. Each element
specifies a dash length in pixels. All of the elements must be non-zero, or a BadValue
error results. All of the elements must be less than 256 or exception Range is raised.
Specifying an odd-length list is equivalent to specifying the same list concatenated with
itself to produce an even-length list.

The dash-offset defines the phase of the pattern, specifying how many pixels into the dash-
list the pattern should actually begin in any single graphics request. Dashing is continuous
through path elements combined with a join-style but is reset to the dash-offset between
each sequence of joined lines.

The unit of measure for dashes is the same for the ordinary coordinate system. Ideally, a
dash length is measured along the slope of the line, but implementations are only required
to match this ideal for horizontal and vertical lines. Failing the ideal semantics, it is
suggested that the length be measured along the major axis of the line. The major axis is
defined as the x axis for lines drawn at an angle of between -45 and +45 degrees or between
315 and 225 degrees from the x axis. For all other lines, the major axis is the y axis.

2.10.10 XSetFillRule
Types:

val XSetFillRule: GC -> GCFillRule -> unit
Syntax:

XSetFillRule gc rule ;

Arguments:

80 X Reference 1.1 ©Abstract Hardware Ltd 1991,1994

gc Specifies the GC.

rule Specifies the fill-rule you want to set for the specified GC. You can pass Even-
OddRule or WindingRule.

Argument Type:
datatype GCFillRule = EvenOddRule | WindingRule

Description:
The XSetFillRule function sets the fill-rule in the specified GC.

2.10.11 XSetFillStyle

Types:
val XSetFillStyle: GC -> GCFillStyle -> unit
Syntax:

XSetFillStyle gc style ;

Arguments:
gc Specifies the GC.
style Specifies the fill-style you want to set for the specified GC. You can pass Fill-

Solid, FillTiled, FillStippled, or FillOpaqueStippled.
Argument Type:

datatype GCFillStyle = FillSolid | FillTiled
| FillStippled | FillOpaqueStippled

Description:
The XSetFillStyle function sets the fill-style in the specified GC.

2.10.12 XSetFont

Types:
val XSetFont: GC -> Font -> unit
Syntax:

XSetFont gc font ;

Arguments:
gc Specifies the GC.
font Specifies the font.
Description:

The XSetFont function sets the current font in the specified GC.

@©Abstract Hardware Ltd 1991,199, X Reference 1.1

2.10.13 XSetForeground
Types:

val XSetForeground: GC -> int -> unit
Syntax:

XSetForeground gc foreground ;

Arguments:
foreground Specifies the foreground pixel.
gc Specifies the GC.
Description:

The XSetForeground function sets the foreground pixel in the specified GC.

2.10.14 XSetFunction
Types:

val XSetFunction: GC -> GCFunction -> unit
Syntax:

XSetFunction gc function ;

Arguments:
function Specifies the drawing function.
gc Specifies the GC.
Description:

XSetFunction sets the drawing function in the specified GC.

2.10.15 XSetGraphicsExposures
Types:

val XSetGraphicsExposures: GC -> bool -> unit
Syntax:

XSetGraphicsExposures gc exposures ;

Arguments:

81

82
gc
exposures
Description:

X Reference 1.1 ©Abstract Hardware Ltd 1991,1994

Specifies the GC.

Specifies a bool that indicates whether you want GraphicsExpose
and NoExpose events to be reported when calling XCopyArea and
XCopyPlane with this GC.

The XSetGraphicsExposures function sets the graphics-exposures flag in the specified

GC.

2.10.16 XSetLineAttributes

Types:
val XSetLineAttributes: GC -> int ->
GCLineStyle ->
GCCapStyle ->
GCJoinStyle -> unit
Syntax:

XSetLineAttributes gc lineWidth lineStyle capStyle joinStyle ;

Arguments:

capStyle
joinStyle
lineStyle

lineWidth

Description:

Specifies the line-style and cap-style you want to set for the specified GC.
You can pass CapNotLast, CapButt, CapRound, or CapProjecting.

Specifies the line join-style you want to set for the specified GC. You can
pass JoinMiter, JoinRound, or JoinBevel.

Specifies the line-style you want to set for the specified GC. You can pass
LineSolid, LineOnOffDash, or LineDoubleDash.

Specifies the line-width you want to set for the specified GC.

The XSetLineAttributes function sets the line drawing components in the specified GC.

2.10.17 XSetPlaneMask

Types:

val XSetPlaneMask: GC -> int -> unit

Syntax:

XSetPlaneMask gc planeMask ;

Arguments:

gc

planeMask

Description:

Specifies the GC.
Specifies the plane mask.

The XSetPlaneMask function sets the plane mask in the specified GC.

@©Abstract Hardware Ltd 1991,199, X Reference 1.1 83

2.10.18 XSetState
Types:

val XSetState: GC -> int -> int -> GCFunction -> int -> unit
Syntax:

XSetState gc foreground background function planeMask ;

Arguments:
background Specifies the background pixel.
foreground Specifies the foreground pixel.
function Specifies the drawing function.
gc Specifies the GC.
planeMask Specifies the plane mask.
Description:

The XSetState function sets the foreground, background, plane mask, and function com-
ponents for the specified GC.

2.10.19 XSetStipple
Types:

val XSetStipple: GC -> Drawable -> unit
Syntax:

XSetStipple gc stipple ;

Arguments:

gc Specifies the GC.

stipple Specifies the stipple you want to set for the specified GC.
Description:

The XSetStipple function sets the stipple in the specified GC. The stipple and GC must
have the same depth, or a BadMatch error results.

84 X Reference 1.1 ©Abstract Hardware Ltd 1991,1994

2.10.20 XSetSubwindowMode
Types:

val XSetSubwindowMode: GC -> GCSubwindowMode -> unit
Syntax:

XSetSubwindowMode gc mode ;

Arguments:
gc Specifies the GC.
mode Specifies the subwindow mode. You can pass ClipByChildren or Include-

Inferiors.

Argument Type:
datatype GCSubwindowMode = ClipByChildren | IncludeInferiors

Description:
The XSetSubwindowMode function sets the subwindow mode in the specified GC.

2.10.21 XSetTile

Types:

val XSetTile: GC -> Drawable -> unit

Syntax:

XSetTile gc tile ;

Arguments:

gc Specifies the GC.

tile Specifies the fill tile you want to set for the specified GC.
Description:

The XSetTile function sets the fill tile in the specified GC. The tile and GC must have
the same depth, or a BadMatch error results.

@©Abstract Hardware Ltd 1991,199, X Reference 1.1

2.10.22 XSetTSOrigin
Types:

val XSetTSOrigin: GC -> XPoint -> unit
Syntax:

XSetTSOrigin gc origin ;

Arguments:

gc Specifies the GC.

origin Specifies the x and y coordinates of the tile and stipple origin.
Description:

85

The XSetTSOrigin function sets the tile/stipple origin in the specified GC. When graph-
ics requests call for tiling or stippling, the parent’s origin will be interpreted relative to

whatever destination drawable is specified in the graphics request.

2.11 Images

2.11.1 ImageByteOrder, ImageDepth, ImageSize
Types:

val ImageByteOrder: XImage -> ImageOrder
val ImageDepth: XImage -> int
val ImageSize: XImage -> XRectangle

Argument Type:
datatype ImageOrder = LSBFirst | MSBFirst

Syntax:

val order = ImageByteOrder image ;

val depth = ImageDepth image ;
val area = ImageSize image ;
Description:

The ImageByteOrder function returns the byte order value of an XImage.

The ImageSize function returns the size in pixels of an XImage.

The ImageDepth function returns the depth value of an XImage.

86

X Reference 1.1 ©Abstract Hardware Ltd 1991,1994

2.11.2 VisualRedMask, VisualGreenMask, VisualBlueMask

Types:

val
val
val

Syntax:

val
val
val

VisualRedMask: Visual -> int
VisualGreenMask: Visual -> int
VisualBlueMask: Visual -> int

redMask
greenMask
blueMask

Arguments:

visual

Description:

VisualRedMask visual ;
VisualGreenMask visual ;
VisualBlueMask visual ;

Specifies the visual.

These functions return the masks used for Z format images.

2.11.3 XCreatelmage, XGetPixel, XPutPixel, XSubImage,
XAddPixel

Types:

val
val
val
val

val

Syntax:

val

val
val

XPutPixel
XAddPixel

XGetPixel:
XPutPixel:
XSubImage:
XAddPixel:

XImage -> XPoint -> int

XImage -> XPoint -> int -> unit
XImage -> XRectangle -> XImage
XImage -> int -> unit

XCreatelImage: Visual -> int ->

image

ImageFormat -> int ->
string -> XRectangle -> int -> int -> XImage

XCreateImage visual depth format offset

data area bitmapPad bytesPerLine ;

pixel = XGetPixel image point ;

image

Arguments:

bitmapPad

XSubImage image subArea ;

image point pixel ;
image value ;

Specifies the quantum of a scanline (8, 16, or 32 bits). In other words,
the start of one scanline is separated in client memory from the start
of the next scanline by an integer multiple of this many bits.

@©Abstract Hardware Ltd 1991,199, X Reference 1.1 87

bytesPerLine Specifies the number of bytes in the client image between the start of
one scanline and the start of the next.

data Specifies the image data.

depth Specifies the depth of the image.

format Specifies the format for the image. You can pass XYBitmap, XYP-
ixmap, or ZPixmap.

area Specifies the width and height of the image, in pixels.

offset Specifies the number of pixels to ignore at the beginning of the scan-
line.

pixel Specifies the new pixel value.

subArea Specifies the position and size of the new subimage, in pixels.

value Specifies the constant value that is to be added.

visual Specifies the visual.

ximage Specifies the image.

point Specifies the x and y coordinates.

Argument Type:

datatype ImageFormat = XYBitmap | XYPixmap | ZPixzmap
datatype ImageOrder = LSBFirst | MSBFirst
type ImageData

val Data: string -> ImageData

datatype XImage = XImage of { data: ImageData,
size: XRectangle,
depth: int,
format: ImageFormat,
xoffset: int,
bitmapPad: int,
byteOrder: ImageOrder,
bitmapUnit: int,
bitsPerPixel: int,
bytesPerLine: int,
visualRedMask: int,

bitmapBitOrder: ImageOrder,
visualBlueMask: int,
visualGreenMask: int }

Description:

The XCreatelmage function initializes the XImage byteOrder, bitmapBitOrder, and
bitmapUnit values from the display and returns an XImage structure. The red, green,
and blue mask values are defined for Z format images only and are derived from the
Visual structure passed in. Other values also are passed in. The offset permits the rapid
displaying of the image without requiring each scanline to be shifted into position. If
you pass a zero value in bytesPerLine, Xlib assumes that the scanlines are contiguous in
memory and calculates the value of bytesPerLine itself.

88

X Reference 1.1 ©Abstract Hardware Ltd 1991,1994

The XGetPixel function returns the specified pixel from the named image. The pixel
value is returned in normalized format (that is, the least-significant byte of the int is the
least-significant byte of the pixel). The image must contain the x and y coordinates.

The XPutPixel function overwrites the pixel in the named image with the specified pixel
value. The input pixel value must be in normalized format (that is, the least-significant
byte of the int is the least-significant byte of the pixel). The image must contain the x and
y coordinates.

The XSubImage function creates a new image that is a subsection of an existing one. The
data is copied from the source image, and the image must contain the rectangle defined
by subArea. If XSubImage fails then exception XWindows is raised with ”XSublmage
failed” .

The X AddPixel function adds a constant value to every pixel in an image. It is useful
when you have a base pixel value from allocating colour resources and need to manipulate
the image to that form.

2.11.4 XPutlImage, XGetImage, XGetSubImage

Types:

val XPutImage: Drawable -> GC -> XImage -> XPoint -> XRectangle -> unit
val XGetImage: Drawable -> XRectangle -> int -> ImageFormat -> XImage

val XGetSubImage: Drawable -> XRectangle -> int -> ImageFormat ->
XImage -> XPoint -> unit

Syntax:

val image = XGetImage d area planeMask format ;
XGetSubImage d area planeMask format destImage destPoint ;
XPutImage d gc image srcPoint destArea ;

Arguments:

d Specifies the drawable.

destImage Specifies the destination image.

destPoint Specifies the x and y coordinates, which are relative to the origin of the
drawable and are the coordinates of the subimage or which are relative
to the origin of the destination rectangle, specify its upper-left corner,
and determine where the subimage is placed in the destination image.

format Specifies the format for the image. You can pass XYBitmap, XYP-
ixmap, or ZPixmap.

gc Specifies the GC.

image Specifies the image you want combined with the rectangle.

planeMask Specifies the plane mask.

srcPoint Specifies the offsets from the left and top edges of the image defined by
the XImage structure.

area Specifies the position and size of the subimage,

@©Abstract Hardware Ltd 1991,199, X Reference 1.1 89

destArea Specifies coordinates relative to the origin of the drawable to define the
destination rectangle.

Description:

The XPutImage function combines an image in memory with a rectangle of the specified
drawable. If XYBitmap format is used, the depth must be one, or a BadMatch error
results. The foreground pixel in the GC defines the source for the one bits in the image, and
the background pixel defines the source for the zero bits. For XYPixmap and ZPixmap,
the depth must match the depth of the drawable, or a BadMatch error results. The
section of the image defined by the srcPoint and area arguments is drawn on the specified
part of the drawable at the position specified by destArea

This function uses these GC components: foreground, background, function, plane-mask,
subwindow-mode, clip-origin, and clip-mask.

The XGetImage function returns an XImage structure. This structure provides you
with the contents of the specified rectangle of the drawable in the format you specify. If
the format argument is X YPixmap, the image contains only the bit planes you passed to
the planeMask argument. If the planeMask argument only requests a subset of the planes
of the display, the depth of the returned image will be the number of planes requested.
If the format argument is ZPixmap, XGetImage returns as zero the bits in all planes
not specified in the planeMask argument. The function performs no range checking on the
values in planeMask and ignores extraneous bits.

XGetImage returns the depth of the image to the depth member of the XImage struc-
ture. The depth of the image is as specified when the drawable was created, except when
getting a subset of the planes in X YPixmap format, when the depth is given by the
number of bits set to 1 in planeMask.

If the drawable is a pixmap, the given rectangle must be wholly contained within the
pixmap, or a BadMatch error results. If the drawable is a window, the window must be
viewable, and it must be the case that if there were no inferiors or overlapping windows, the
specified rectangle of the window would be fully visible on the screen and wholly contained
within the outside edges of the window, or a BadMatch error results. Note that the
borders of the window can be included and read with this request. If the window has
backing-store, the backing-store contents are returned for regions of the window that are
obscured by noninferior windows. If the window does not have backing-store, the returned
contents of such obscured regions are undefined. The returned contents of visible regions
of inferiors of a different depth than the specified window’s depth are also undefined. The
pointer cursor image is not included in the returned contents. If XGetImage fails then
exception XWindows is raised with ”XGetImage failed” .

The XGetSubImage function updates destImage with the specified subimage in the same
manner as XGetImage. If the format argument is XYPixmap, the image contains only
the bit planes you passed to the planeMask argument. If the format argument is ZPixmap,
XGetSubImage returns as zero the bits in all planes not specified in the planeMask
argument. The function performs no range checking on the values in planeMask and
ignores extraneous bits.

The depth of the destination XImage structure must be the same as that of the drawable.
If the specified subimage does not fit at the specified location on the destination image, the
right and bottom edges are clipped. If the drawable is a pixmap, the given rectangle must
be wholly contained within the pixmap, or a BadMatch error results. If the drawable
is a window, the window must be viewable, and it must be the case that if there were
no inferiors or overlapping windows, the specified rectangle of the window would be fully
visible on the screen and wholly contained within the outside edges of the window, or a
BadMatch error results. If the window has backing-store, then the backing-store contents

90 X Reference 1.1 ©Abstract Hardware Ltd 1991,1994

are returned for regions of the window that are obscured by noninferior windows. If the
window does not have backing-store, the returned contents of such obscured regions are
undefined. The returned contents of visible regions of inferiors of a different depth than
the specified window’s depth are also undefined.

2.12 Properties and Selections

2.12.1 XDeleteProperty
Types:

val XDeleteProperty: Drawable -> int -> unit
Syntax:

XDeleteProperty w property ;

Arguments:

property Specifies the property name.

w Specifies the window containing the property.
Description:

The XDeleteProperty function deletes the specified property only if the property was
defined on the specified window and causes the X server to generate a PropertyNotify event
on the window unless the property does not exist.

2.12.2 XlInternAtom, XGetAtomName

Types:

val XInternAtom: string -> bool -> int
val XGetAtomName: int -> string

Syntax:

val atom = XInternAtom name onlyIfExists ;
val name = XGetAtomName atom ;

Arguments:
atom Specifies the atom whose name you want returned.
name Specifies the name associated with the atom you want returned.
onlyIfExists Specifies a bool that indicates whether XInternAtom creates the

atom.

©Abstract Hardware Ltd 1991,1994

Description:

X Reference 1.1

91

The XInternAtom function returns the atom identifier associated with the specified
name string. If onlyIfExists is false, the atom is created if it does not exist, otherwise,
XInternAtom returns zero. You should use an ISO Latin-1 string for name. Case matters;
the strings ”thing” , ”Thing” , and "thinG” all designate different atoms. The atom will
remain defined even after the client’s connection closes. It will become undefined only
when the last connection to the X server closes.

The XGetAtomName function returns the name associated with the specified atom.
If XGetAtomName fails then exception XWindows is raised with ”XGetAtomName

failed” .

2.12.3 XSetProperty, XGetTextProperty

Types:

val XSetProperty: Drawable -> int -> PropertyValue -> int -> unit
val XGetTextProperty: Drawable -> int -> (string * int * int * int)

Syntax:

XSetProperty w propertyAtom propertyValue propertyTypeAtom ;
val (value,encoding,format,nitems) = XGetTextProperty w propertyAtom ;

Arguments:

w
propertyAtom
propertyValue
propertyTypeAtom
value

encoding

format

nitems

Argument Type:

datatype PropertyValue

Specifies the window

Specifies the property name as an Atom.

Specifies the property value as one of the predefined types.

Specifies the name of the property type as an Atom.

Returns the contents of the property as chars/bytes.

Returns the property type atom

Returns the property format which is 1, 2 or 4 bytes per item.

Returns the number of items in the value

PropertyArc of
PropertyAtom of
PropertyBitmap of
PropertyColormap of
PropertyCursor of
PropertyDrawable of
PropertyFont of
PropertyInteger of
PropertyPixmap of
PropertyPoint of
PropertyRectangle of
PropertyRGBColormap of
PropertyString of

XArc list

int list
Drawable list
Colormap list
Cursor list
Drawable list
Font list

int list
Drawable list
XPoint list
XRectangle list
XStandardColormap list
string

92 X Reference 1.1 ©Abstract Hardware Ltd 1991,1994

PropertyVisual of Visual list
PropertyWindow of Drawable list

PropertyWMSizeHints of XWMSizeHint list

PropertyWMIconSizes of (XRectangle *
XRectangle *
XRectangle) list

|
|
| PropertyWMHints of XWMHint list
|
|

Properties:

WM_CLIENT MACHINE The string name of the machine on which the client

application is running.

WM_COMMAND The command and arguments, separated by ASCII
nulls, used to invoke the application.
WM_ICON_NAME Name to be used in icon.
WM_NAME Name of the application.
Description:

The XSetProperty function replaces the existing, specified property for the named win-
dow with the value and type specified. If the property does not already exist, XSetProp-
erty creates it for the specified window.

The XGetTextProperty function reads the specified property from the window. The
particular interpretation of the property’s encoding and value as ’text’ is left to the call-
ing application. If the specified property does not exist on the window, then exception
XWindows is raised with ” XGetTextProperty failed” .

2.12.4 XSetSelectionOwner, XGetSelectionOwner,
XConvertSelection, XSendSelectionNotify

Types:

val XSetSelectionOwner: int -> Drawable -> int -> unit
val XGetSelectionOwner: int -> Drawable

val XConvertSelection: { selection: int,
target: int,
property: int,
requestor: Drawable,
time: int } -> unit

val XSendSelectionNotify: { selection: int,
target: int,
property: int,
requestor: Drawable,
time: int } -> unit

Syntax:

XSetSelectionOwner selection owner time ;
val owner = XGetSelectionOwner selection ;
XConvertSelection {selection,target,property,requestor,time} ;
XSendSelectionNotify {selection,target,property,requestor,time} ;

@©Abstract Hardware Ltd 1991,199, X Reference 1.1 93

Arguments:

selection Specifies the selection atom.

owner Specifies/returns the owner of the specified selection atom. You can pass
a window or NoDrawable.

time Specifies the time. You can pass either a timestamp or CurrentTime.

target Specifies the target atom.

property Specifies the property name. You also can pass zero.

requestor Specifies the requestor.

Argument Type:
val CurrentTime: int

Description:

The XSetSelectionOwner function changes the owner and last-change time for the spec-
ified selection and has no effect if the specified time is earlier than the current last-change
time of the specified selection or is later than the current X server time. Otherwise, the
last-change time is set to the specified time, with CurrentTime replaced by the current
server time. If the owner window is specified as NoDrawable, then the owner of the
selection becomes NoDrawable (that is, no owner). Otherwise, the owner of the selection
becomes the client executing the request.

If the new owner (whether a client or NoDrawable) is not the same as the current owner
of the selection and the current owner is not NoDrawable, the current owner is sent a
SelectionClear event. If the client that is the owner of a selection is later terminated
(that is, its connection is closed) or if the owner window it has specified in the request
is later destroyed, the owner of the selection automatically reverts to NoDrawable, but
the last-change time is not affected. The selection atom is uninterpreted by the X server.
XGetSelectionOwner returns the owner window, which is reported in SelectionRe-
quest and SelectionClear events. Selections are global to the X server.

The XGetSelectionOwner function returns the Drawable associated with the window
that currently owns the specified selection. If no selection was specified, the function
returns the constant NoDrawable. If NoDrawable is returned, there is no owner for the
selection.

XConvertSelection requests that the specified selection be converted to the specified
target type:

If the specified selection has an owner, the X server sends a SelectionRequest event
to that owner.

If no owner for the specified selection exists, the X server generates a SelectionNotify
event to the requestor with property zero.

The arguments are passed on unchanged in either of the events. There are two predefined
selection atoms: XA_PRIMARY and XA_SECONDARY.

XSendSelectionNotify is called when you have received a SelectionRequest event
asking for the selection, which you currently own, to be converted to some desired type.
When you have completed the conversion you store the converted value in the indicated
property on the window. Then you call XSendSelectionNotify with the same parameters
as the SelectionRequest event to indicate that the conversion was successful. If cannot

94

X Reference 1.1 ©Abstract Hardware Ltd 1991,1994

perform the conversion then you call XSendSelectionNotify with property set to zero to
indicate that the conversion failed. If the conversion was successful then the requestor will
read the value from the property on the window, and will delete the property to indicate
that the transfer has been completed.

2.13 Screen Saver

2.13.1 XSetScreenSaver, XForceScreenSaver, X ActivateScreenSaver,
XResetScreenSaver, XGetScreenSaver

Types:
val XSetScreenSaver: int -> int -> Blanking -> Exposures -> unit
val XForceScreenSaver: SaveMode -> unit
val XActivateScreenSaver: unit -> unit
val XResetScreenSaver: unit -> unit
val XGetScreenSaver: unit -> (int * int * Blanking * Exposures)
Syntax:

XSetScreenSaver timeout interval preferBlanking allowExposures ;
XForceScreenSaver mode ;
XActivateScreenSaver() ;

XResetScreenSaver ()

3

val (timeout,interval,preferBlanking,allowExposures) = XGetScreenSaver() ;

Arguments:

allowExposures

interval

mode

preferBlanking

timeout

Argument Type:

datatype SaveMode
datatype Blanking
datatype Exposures

Description:

Specifies/returns the screen save control values. You can pass
DontAllowExposures, AllowExposures, or DefaultExpo-
sures.

Specifies/returns the interval, in seconds, between screen saver al-
terations.

Specifies the mode that is to be applied. You can pass Screen-
SaverActive or ScreenSaverReset.

Specifies/returns how to enable screen blanking. You can pass
DontPreferBlanking, PreferBlanking, or DefaultBlanking.

Specifies the timeout, in seconds, until the screen saver turns on.

= ScreenSaverReset | ScreenSaverActive
= DontPreferBlanking | PreferBlanking | DefaultBlanking
DontAllowExposures | AllowExposures | DefaultExposures

Timeout and interval are specified in seconds. A timeout of 0 disables the screen saver
(but an activated screen saver is not deactivated), and a timeout of ~1 restores the de-
fault. Other negative values generate a BadValue error. If the timeout value is non-zero,

@©Abstract Hardware Ltd 1991,199, X Reference 1.1 95

XSetScreenSaver enables the screen saver. An interval of 0 disables the random-pattern
motion. If no input from devices (keyboard, mouse, and so on) is generated for the specified
number of timeout seconds once the screen saver is enabled, the screen saver is activated.

For each screen, if blanking is preferred and the hardware supports video blanking, the
screen simply goes blank. Otherwise, if either exposures are allowed or the screen can
be regenerated without sending Expose events to clients, the screen is tiled with the
root window background tile randomly re-origined each interval minutes. Otherwise, the
screens’ state do not change, and the screen saver is not activated. The screen saver is
deactivated, and all screen states are restored at the next keyboard or pointer input or at
the next call to XForceScreenSaver with mode ScreenSaverReset.

If the server-dependent screen saver method supports periodic change, the interval argu-
ment serves as a hint about how long the change period should be, and zero hints that no
periodic change should be made. Examples of ways to change the screen include scram-
bling the colormap periodically, moving an icon image around the screen periodically, or
tiling the screen with the root window background tile, randomly re-origined periodically.

If the specified mode is ScreenSaverActive and the screen saver currently is deactivated,
XForceScreenSaver activates the screen saver even if the screen saver had been disabled
with a timeout of zero. If the specified mode is ScreenSaverReset and the screen saver
currently is enabled, XForceScreenSaver deactivates the screen saver if it was activated,
and the activation timer is reset to its initial state (as if device input had been received).

The X ActivateScreenSaver function activates the screen saver.
The XResetScreenSaver function resets the screen saver.

The XGetScreenSaver function gets the current screen saver values.

2.14 Tiles, Stipples, Bitmaps and Pixmaps

2.14.1 XCreatePixmap, XFreePixmap

Types:

val XCreatePixmap: Drawable -> XRectangle -> int -> Drawable
val XFreePixmap: Drawable -> unit

Syntax:

val pixmap = XCreatePixmap d area depth ;
XFreePixmap pixmap ;

Arguments:
d Specifies which screen the pixmap is created on.
depth Specifies the depth of the pixmap.
pixmap Specifies the pixmap.

area Specifies the width and height, which define the dimensions of the pixmap.

96 X Reference 1.1 ©Abstract Hardware Ltd 1991,1994

Description:

The XCreatePixmap function creates a pixmap of the width, height, and depth you
specified and returns a Drawable that identifies it. It is valid to pass an InputOnlyClass
window to the drawable argument. The width and height arguments must be non-zero, or
a BadValue error results. The depth argument must be one of the depths supported by
the screen of the specified drawable, or a BadValue error results.

The server uses the specified drawable to determine on which screen to create the pixmap.
The pixmap can be used only on this screen and only with other drawables of the same
depth (see XCopyPlane for an exception to this rule). The initial contents of the pixmap
are undefined.

The XFreePixmap function first deletes the association between the Drawable value
and the pixmap in the server. Then, the X server frees the pixmap storage when there are
no references to it. The pixmap should never be referenced again.

2.14.2 XReadBitmapFile, XWriteBitmapFile,
XCreatePixmapFromBitmapData, XCreateBitmapFromData

Types:
val XReadBitmapFile: Drawable -> string -> BitmapStatus
val XWriteBitmapFile: string -> Drawable ->
XRectangle -> XPoint -> BitmapStatus
val XCreatePixmapFromBitmapData: Drawable -> string -> XRectangle ->
int -> int -> int -> Drawable
val XCreateBitmapFromData: Drawable -> string -> XRectangle -> Drawable
Syntax:
val status = XReadBitmapFile d filename ;
val status = XWriteBitmapFile filename bitmap area hotspot ;
val pixmap = XCreatePixmapFromBitmapData d data area fg bg depth ;
val bitmap = XCreateBitmapFromData d data area ;
Arguments:
bitmap Specifies the bitmap.
status Returns the bitmap that is created, or an error condition.
d Specifies the drawable that indicates the screen.
data Specifies the data in bitmap format.
depth Specifies the depth of the pixmap.
fg Specifies the foreground and
bg background pixel values to use.
filename Specifies the file name to use.

area Specifies the width and height.

@©Abstract Hardware Ltd 1991,199, X Reference 1.1 97

hotspot Specifies where to place the hotspot coordinates, or (71,71) if none are
present in the file.

Argument Type:

datatype BitmapStatus = BitmapOpenFailed
| BitmapFileInvalid
| BitmapNoMemory

I

BitmapSuccess of Drawable * XRectangle * XPoint

Description:

The XReadBitmapFile function reads in a file containing a bitmap. The ability to read
other than the standard format is implementation dependent. If the file cannot be opened,
XReadBitmapFile returns BitmapOpenFailed. If the file can be opened but does not
contain valid bitmap data, it returns BitmapFileInvalid. If insufficient working storage
is allocated, it returns BitmapNoMemory. If the file is readable and valid, it returns
BitmapSuccess.

XReadBitmapFile reads the bitmap’s height and width from the file. It then creates a
pixmap of the appropriate size and reads the bitmap data from the file into the pixmap.
The caller must free the bitmap using XFreePixmap when finished. If the hotspot is
defined in the bitmap file, XReadBitmapZF'ile returns the hotspot in the status as well,
otherwise it returns (71,71).

The XWriteBitmapFile function writes a bitmap out to a file in the X version 11 format.
If the file cannot be opened for writing, it returns BitmapOpenFailed. If insufficient
memory is allocated, XWriteBitmapF'ile returns BitmapNoMemory; otherwise, on
no error, it returns BitmapSuccess. If the hotspot is not (71,71), XWriteBitmapFile
writes it out as the hotspot coordinates for the bitmap.

The XCreatePixmapFromBitmapData function creates a pixmap of the given depth
and then does a bitmap-format XPutImage of the data into it. The depth must be
supported by the screen of the specified drawable, or a BadMatch error results.

The XCreateBitmapFromData function allows you to include a bitmap file without
reading in the bitmap file. The following example creates a weave bitmap:

val data = [17, 17, 184, 184, 124, 124, 58, 58,
17, 17, 163, 163, 199, 199, 139, 139,
17, 17, 184, 184, 124, 124, 58, B58,
17, 17, 163, 163, 199, 199, 139, 139] ;

fun MakeData [] = "
| MakeData (H::T) chr H ~ MakeData T ;

val wideWeave = XCreateBitmapFromData root (MakeData data)
(Area{x=0,y=0,w=16,h=163}) ;

If insufficient working storage was allocated, XCreateBitmapFromData returns
NoDrawable. It is your responsibility to free the bitmap using XFreePixmap when
finished.

98 X Reference 1.1 ©Abstract Hardware Ltd 1991,1994

2.15 User Preferences

2.15.1 XAutoRepeatOn, XAutoRepeatOff, XBell, XQueryKeymap

Types:

val XAutoRepeatOff: unit -> unit
val XAutoRepeatOn: wunit -> unit
val XBell: int -> unit
val XQueryKeymap: unit -> bool list (* 256 bools *)

Syntax:

XAutoRepeatOn() ;
XAutoRepeatOff () ;

XBell percent ;

val keymap = XQueryKeymap() ;

Arguments:
percent Specifies the volume for the bell, which can range from ~100 to 100 inclusive.
keymap Returns the keyboard state vector

Description:

The XAutoRepeatOn function turns on auto-repeat for the keyboard.
The XAutoRepeatOff function turns off auto-repeat for the keyboard.

The XBell function rings the bell on the keyboard on the specified display, if possible.
The specified volume is relative to the base volume for the keyboard. If the value for the
percent argument is not in the range ~100 to 100 inclusive, a BadValue error results. The
volume at which the bell rings when the percent argument is nonnegative is:

base - (base * percent) / 100 + percent
The volume at which the bell rings when the percent argument is negative is:
base + (base * percent) / 100

To change the base volume of the bell, use XChangeKeyboardControl.

The XQueryKeymap function returns a bit vector for the logical state of the keyboard.
The vector is returned as a list of 256 bools, representing the keys 0 to 255 in that order.
Each bool set to true indicates that the corresponding key is currently pressed.

Note that the logical state of a device (as seen by client applications) may lag the physical
state if device event processing is frozen.

2.15.2 XGetDefault

Types:

val XGetDefault: string -> string -> string

@©Abstract Hardware Ltd 1991,199, X Reference 1.1 99

Syntax:

val default = XGetDefault program option ;

Arguments:
option Specifies the option name.
program Specifies the program name.
Description:

XGetDefault returns the value for the program and option entry in the user’s defaults
database. If XGetDefault fails then exception XWindows is raised with ” XGetDefault
failed” .

2.16 Windows

2.16.1 XCreateWindow, XCreateSimpleWindow

Types:
val XCreateWindow: Drawable -> XPoint -> XRectangle ->
int -> int -> WindowClass -> Visual ->
XSetWindowAttributes list -> Drawable
val XCreateSimpleWindow: Drawable -> XPoint -> XRectangle ->
int -> int -> int -> Drawable
Syntax:
val window = XCreateWindow parent point area
borderWidth depth class visual attributes ;
val window = XCreateSimpleWindow parent point area
borderWidth borderPixel backgroundPixel ;
Arguments:
attributes Specifies the initial values for the window’s attributes.
backgroundPixel Specifies the background pixel value of the window.
borderPixel Specifies the border pixel value of the window.
borderWidth Specifies the width of the window’s border in pixels.
class Specifies the window’s class. You can pass InputOutput-
Class, InputOnlyClass, or CopyFromParentClass. A class
of CopyFromParentClass means the class is taken from the
parent.
depth Specifies the window’s depth. A depth of zero means the depth

is taken from the parent.

parent Specifies the parent window.

100

X Reference 1.1 ©Abstract Hardware Ltd 1991,1994

visual Specifies the visual type. A visual of CopyFromParentVisual
means the visual type is taken from the parent.

area Specifies the width and height, which are the created window’s
inside dimensions and do not include the created window’s bor-
ders.

point Specifies the x and y coordinates, which are the top-left outside

corner of the window’s borders and are relative to the inside of
the parent window’s borders.

Argument Type:

datatype XSetWindowAttributes = CWBackPixmap of Drawable
| CwWBackPixel of int
| CWBorderPixmap of Drawable
| CWBorderPixel of int
| CWBitGravity of Gravity
| CWWinGravity of Gravity
| CWBackingStore of BackingStore
| CWBackingPlanes of int
| CWBackingPixel of int
| CWOverrideRedirect of bool
| CwSaveUnder of bool
| CWEventMask of EventMask list
| CWDontPropagate of EventMask list
| CWColormap of Colormap
| CWCursor of Cursor

datatype BackingStore = NotUseful | WhenMapped | Always
datatype WindowClass = CopyFromParentClass
| InputOutputClass

| InputOnlyClass

Description:

The XCreateWindow function creates an unmapped subwindow for a specified parent
window, returns the Drawable value for the created window, and causes the X server to
generate a CreateNotify event. The created window is placed on top in the stacking
order with respect to siblings.

The borderWidth for an InputOnlyClass window must be zero, or a BadMatch error
results. For class InputOutputClass, the visual type and depth must be a combination
supported for the screen, or a BadMatch error results. The depth need not be the
same as the parent, but the parent must not be a window of class InputOnlyClass, or
a BadMatch error results. For an InputOnlyClass window, the depth must be zero,
and the visual must be one supported by the screen. If either condition is not met, a
BadMatch error results. The parent window, however, may have any depth and class. If
you specify any invalid window attribute for a window, a BadMatch error results.

The created window is not yet displayed (mapped) on the user’s display. To display the
window, call XMapWindow. The new window initially uses the same cursor as its parent.
A new cursor can be defined for the new window by calling XDefineCursor. The window
will not be visible on the screen unless it and all of its ancestors are mapped and it is not
obscured by any of its ancestors.

If XCreateWindow fails then exception XWindows is raised with ”XCreateWindow
failed” .

@©Abstract Hardware Ltd 1991,199, X Reference 1.1 101

The XCreateSimpleWindow function creates an unmapped InputOutputClass sub-
window for a specified parent window, returns the Drawable value for the created window,
and causes the X server to generate a CreateNotify event. The created window is placed
on top in the stacking order with respect to siblings. Any part of the window that extends
outside its parent window is clipped. The borderWidth for an InputOnlyClass win-
dow must be zero, or a BadMatch error results. XCreateSimpleWindow inherits its
depth, class, and visual from its parent. All other window attributes, except background
and border, have their default values. If XCreateSimpleWindow fails then exception
XWindows is raised with ”XCreateSimpleWindow failed” .

2.16.2 XDestroyWindow, XDestroySubwindows

Types:

val XDestroyWindow: Drawable -> unit
val XDestroySubwindows: Drawable -> unit

Syntax:

XDestroyWindow w ;
XDestroySubwindows w ;

Arguments:
w Specifies the window.

Description:

The XDestroyWindow function destroys the specified window as well as all of its sub-
windows and causes the X server to generate a DestroyNotify event for each window.
The window should never be referenced again. If the window specified by the w argument
is mapped, it is unmapped automatically. The ordering of the DestroyNotify events
is such that for any given window being destroyed, DestroyNotify is generated on any
inferiors of the window before being generated on the window itself. The ordering among
siblings and across subhierarchies is not otherwise constrained. If the window you specified
is a root window, no windows are destroyed. Destroying a mapped window will generate
Expose events on other windows that were obscured by the window being destroyed.

The XDestroySubwindows function destroys all inferior windows of the specified win-
dow, in bottom-to-top stacking order. It causes the X server to generate a DestroyNotify
event for each window. If any mapped subwindows were actually destroyed, XDestroy-
Subwindows causes the X server to generate Expose events on the specified window.
This is much more efficient than deleting many windows one at a time because much of
the work need be performed only once for all of the windows, rather than for each window.
The subwindows should never be referenced again. If XDestroySubwindows fails then
exception XWindows is raised with ”XDestroySubwindows failed” .

2.16.3 XGetGeometry, XGetWindowAttributes

Types:

102 X Reference 1.1 ©Abstract Hardware Ltd 1991,1994
val XGetGeometry: Drawable -> (Drawable * XPoint * XRectangle * int * int)
val XGetWindowAttributes: Drawable -> XWindowAttributes

Syntax:

val (root,position,size,borderWidth,depth) = XGetGeometry w ;
val attributes = XGetWindowAttributes w ;

Arguments:

d Specifies the drawable, which can be a window or a pixmap.

root Returns the root window

position Returns the x and y coordinates that define the location of the draw-
able. For a window, these coordinates specify the upper-left outer
corner relative to its parent’s origin. For pixmaps, these coordinates
are always zero.

size Returns the drawable’s dimensions (width and height).

borderWidth Returns the border width in pixels.

depth Returns the depth of the drawable (bits per pixel for the object).

Argument Type:

datatype WindowClass = CopyFromParentClass
| InputOutputClass
I

InputOnlyClass

datatype MapState = IsUnmapped | IsUnviewable | IsViewable

datatype Gravity = ForgetGravity | NorthWestGravity | NorthGravity
| NorthEastGravity | WestGravity | CenterGravity
| EastGravity | SouthWestGravity | SouthGravity
|

SouthEastGravity | StaticGravity
val UnmapGravity: Gravity (* same as ForgetGravity *)
datatype BackingStore = NotUseful | WhenMapped | Always
val NoColormap: Colormap

datatype XWindowAttributes = XWindowAttributes of

{
position: XPoint,
size: XRectangle,
borderWidth: int,
depth: int,
visual: Visual,
root: Drawable,
class: WindowClass,
bitGravity: Gravity,
winGravity: Gravity,
backingStore: BackingStore,
backingPlanes: int,
backingPixel: int,

@©Abstract Hardware Ltd 1991,199, X Reference 1.1 103

saveUnder: bool,

colormap: Colormap,
mapInstalled: bool,

mapState: MapState,
allEventMasks: EventMask list,
yourEventMask: EventMask list,
doNotPropagateMask: EventMask list,
overrideRedirect: bool

Argument Description:

The position member is set to the upper-left outer corner relative to the parent window’s
origin. The size member is set to the inside size of the window, not including the border.
The borderWidth member is set to the window’s border width in pixels. The depth member
is set to the depth of the window (that is, bits per pixel for the object). The visual member
the screen’s associated Visual structure. The root member is set to the root window of
the screen containing the window. The class member is set to the window’s class and can
be either InputOutputClass or InputOnlyClass.

The bitGravity member is set to the window’s bit gravity and can be one of the following:

ForgetGravity EastGravity NorthWestGravity
SouthWestGravity NorthGravity SouthGravity
NorthEastGravity SouthEastGravity WestGravity
StaticGravity CenterGravity

The winGravity member is set to the window’s window gravity and can be one of the

following:
UnmapGravity EastGravity NorthWestGravity
SouthWestGravity NorthGravity SouthGravity

NorthEastGravity SouthEastGravity WestGravity
StaticGravity CenterGravity

The backingStore member is set to indicate how the X server should maintain the contents
of a window and can be WhenMapped, Always, or NotUseful. The backingPlanes
member is set to indicate (with bits set to 1) which bit planes of the window hold dynamic
data that must be preserved in backing-stores and during save-unders. The backingPixel
member is set to indicate what values to use for planes not set in backingPlanes.

The saveUnder member is set to true or false. The colormap member is set to the colormap
for the specified window and can be a Colormap or NoColormap. The maplnstalled
member is set to indicate whether the colormap is currently installed and can be true
or false. The mapState member is set to indicate the state of the window and can be
IsUnmapped, IsUnviewable, or IsViewable. IsUnviewable is used if the window is
mapped but some ancestor is unmapped.

The allEventMasks member is set to the event masks selected on the window by all clients.
The yourEventMask member is set to the event masks selected by the querying client. The
doNotPropagateMask member is set to the list of events that should not propagate.

The overrideRedirect member is set to indicate whether this window overrides structure
control facilities and can be true or false. Window manager clients should ignore the
window if this member is true.

104 X Reference 1.1 ©Abstract Hardware Ltd 1991,1994

Description:

The XGetWindowAttributes function returns the current attributes for the specified
window as an XWindowAttributes structure.

If XGetWindowAttributes fails then exception XWindows is raised with ”XGetWin-
dowAttributes failed” .

The XGetGeometry function returns the root window and the current geometry of the
drawable. The geometry of the drawable includes the position as x and y coordinates,
the size as width and height, the border width, and the depth. These are described in the
argument list. It is legal to pass to this function a window whose class is InputOnlyClass.
If XGetGeometry fails then exception XWindows is raised with ” XGet Geometry failed”

2.16.4 XGetWindowRoot, XGetWindowPosition, XGetWindowSize,
XGetWindowBorderWidth, XGetWindowDepth,
XGetWindowParent, XGetWindowChildren

Types:

val XGetWindowRoot: Drawable -> Drawable

val XGetWindowPosition: Drawable -> XPoint

val XGetWindowSize: Drawable -> XRectangle

val XGetWindowBorderWidth: Drawable -> int

val XGetWindowDepth: Drawable -> int

val XGetWindowParent: Drawable -> Drawable

val XGetWindowChildren: Drawable -> Drawable list
Description:

These convenience functions return the individual attributes returned in bulk by XGet-
Geometry and XQueryTree.

XGetWindowRoot returns the root window for the drawable. XGetWindowPosition
returns the coordinates of the outer top left corner of the window. XGetWindowSize
returns the inside size of the window. XGetWindowBorderWidth returns the border
width in pixels of the window. XGetWindowDepth returns the depth of the window.
XGetWindowParent returns the parent window of the specified window. XGetWin-
dowChildren returns the children of the specified window.

2.16.5 XChangeWindowAttributes, XSetWindowBackground,
XSetWindowBackgroundPixmap, XSetWindowBorder,
XSetWindowBorderPixmap

Types:
val XChangeWindowAttributes: Drawable -> XSetWindowAttributes list -> unit
val XSetWindowBackground: Drawable -> int -> unit
val XSetWindowBackgroundPixmap: Drawable -> Drawable -> unit
val XSetWindowBorder: Drawable -> int -> unit

val XSetWindowBorderPixmap: Drawable -> Drawable -> unit

@©Abstract Hardware Ltd 1991,199, X Reference 1.1 105

Syntax:

XChangeWindowAttributes w attributes ;
XSetWindowBackground w backgroundPixel ;
XSetWindowBackgroundPixmap w backgroundPixmap ;
XSetWindowBorder w borderPixel ;
XSetWindowBorderPixmap w borderPixmap ;

Arguments:
attributes Specifies the list of attributes to change.
backgroundPixel Specifies the pixel that is to be used for the background.
backgroundPixmap Specifies the background pixmap, ParentRelative, or

NoDrawable.

borderPixel Specifies the entry in the colormap.
borderPixmap Specifies the border pixmap or CopyFromParentDrawable.
w Specifies the window.

Argument Type:

datatype XSetWindowAttributes = CWBackPixmap of Drawable
| CWBackPixel of int
| CWBorderPixmap of Drawable
| CWBorderPixel of int
| CWBitGravity of Gravity
| CWWinGravity of Gravity
| CWBackingStore of BackingStore
| CWBackingPlanes of int
| CWBackingPixel of int
| CWOverrideRedirect of bool
| CwSaveUnder of bool
| CWEventMask of EventMask list
| CWDontPropagate of EventMask list
| CWColormap of Colormap
| CWCursor of Cursor

Description:

The XChangeWindowAttributes function uses the window attributes in the
XSetWindowAttributes list to change the specified window attributes. Changing the
background does not cause the window contents to be changed. To repaint the window
and its background, use XClearWindow. Setting the border or changing the background
such that the border tile origin changes causes the border to be repainted. Changing the
background of a root window to NoDrawable or ParentRelative restores the default
background pixmap. Changing the border of a root window to CopyFromParentDraw-
able restores the default border pixmap. Changing the win-gravity does not affect the
current position of the window. Changing the backing-store of an obscured window to
WhenMapped or Always, or changing the backing-planes, backing-pixel, or save-under
of a mapped window may have no immediate effect. Changing the colormap of a window
(that is, defining a new map, not changing the contents of the existing map) generates a
ColormapNotify event. Changing the colormap of a visible window may have no imme-
diate effect on the screen because the map may not be installed (see XInstallColormap).

106

X Reference 1.1 ©Abstract Hardware Ltd 1991,1994

Changing the cursor of a root window to NoCursor restores the default cursor. Whenever
possible, you are encouraged to share colormaps.

Multiple clients can select input on the same window. Their event masks are maintained
separately. When an event is generated, it is reported to all interested clients. However,
only one client at a time can select for SubstructureRedirectMask, ResizeRedirect-
Mask, and ButtonPressMask. If a client attempts to select any of these event masks
and some other client has already selected one, a Bad Access error results. There is only
one do-not-propagate-mask for a window, not one per client.

The XSetWindowBackground function sets the background of the window to the spec-
ified pixel value. Changing the background does not cause the window contents to be
changed. XSetWindowBackground uses a pixmap of undefined size filled with the
pixel value you passed. If you try to change the background of an InputOnlyClass
window, a BadMatch error results.

The XSetWindowBackgroundPixmap function sets the background pixmap of the
window to the specified pixmap. The background pixmap can immediately be freed if
no further explicit references to it are to be made. If ParentRelative is specified, the
background pixmap of the window’s parent is used, or on the root window, the default
background is restored. If you try to change the background of an InputOnlyClass
window, a BadMatch error results. If the background is set to NoDrawable, the window
has no defined background.

The XSetWindowBorder function sets the border of the window to the pixel value you
specify. If you attempt to perform this on an InputOnlyClass window, a BadMatch
error results.

The XSetWindowBorderPixmap function sets the border pixmap of the window to the
pixmap you specify. The border pixmap can be freed immediately if no further explicit
references to it are to be made. If you specify CopyFromParentDrawable, a copy
of the parent window’s border pixmap is used. If you attempt to perform this on an
InputOnlyClass window, a BadMatch error results.

2.16.6 XConfigureWindow, XMoveWindow, XResizeWindow,

XMoveResizeWindow, XSetWindowBorderWidth

Types:
val XConfigureWindow: Drawable -> XWindowChanges list -> unit
val XMoveWindow: Drawable -> XPoint -> unit
val XResizeWindow: Drawable -> XRectangle -> unit
val XMoveResizeWindow: Drawable -> XPoint -> XRectangle -> unit

val XSetWindowBorderWidth: Drawable -> int -> unit

Syntax:

XConfigureWindow w changes ;
XMoveWindow w origin ;

XResizeWindow w area ;
XMoveResizeWindow w origin area ;
XSetWindowBorderWidth w borderWidth ;

Arguments:

@©Abstract Hardware Ltd 1991,199, X Reference 1.1 107

changes Specifies a list of XWindowChanges.

w Specifies the window to be reconfigured.

borderWidth Specifies the width of the window border.

area Specifies the interior dimensions of the window.

origin Specifies the x and y coordinates, which define the new location of

the top-left pixel of the window’s border or the window itself if it has
no border relative to its parent.

Argument Type:

CWPosition of XPoint
CWSize of XRectangle

datatype XWindowChanges =
I

| CWBorderWidth of int

| CWStackMode of StackMode
I

CWSibling of Drawable

datatype StackMode = Above | Below | TopIf | BottomIf | Opposite

Argument Description:

The CWPosition member is used to set the window’s x and y coordinates, which are
relative to the parent’s origin and indicate the position of the upper-left outer corner of
the window. The CWSize member is used to set the inside size of the window, not
including the border, and must be non-zero, or a BadValue error results. Attempts to
configure a root window have no effect.

The CWBorderWidth member is used to set the width of the border in pixels. Note
that setting just the border width leaves the outer-left corner of the window in a fixed
position but moves the absolute position of the window’s origin. If you attempt to set
the border-width attribute of an InputOnlyClass window non-zero, a BadMatch error
results.

The CWSibling member is used to set the sibling window for stacking operations. The
CWStackMode member is used to set how the window is to be restacked and can be set
to Above, Below, ToplIf, BottomlIf, or Opposite.

Description:

The XConfigureWindow function uses the values specified in the XWindowChanges
list to reconfigure a window’s size, position, border, and stacking order. Values not specified
are taken from the existing geometry of the window.

If a sibling is specified without a stack-mode or if the window is not actually a sibling, a
BadMatch error results. Note that the computations for BottomIf, TopIf, and Oppo-
site are performed with respect to the window’s final geometry (as controlled by the other
arguments passed to XConfigureWindow), not its initial geometry. Any backing store
contents of the window, its inferiors, and other newly visible windows are either discarded
or changed to reflect the current screen contents (depending on the implementation).

The XMoveWindow function moves the specified window to the specified x and y coor-
dinates, but it does not change the window’s size, raise the window, or change the mapping
state of the window. Moving a mapped window may or may not lose the window’s contents
depending on if the window is obscured by nonchildren and if no backing store exists. If
the contents of the window are lost, the X server generates Expose events. Moving a
mapped window generates Expose events on any formerly obscured windows.

108

X Reference 1.1 ©Abstract Hardware Ltd 1991,199/

If the override-redirect flag of the window is false and some other client has selected Sub-
structureRedirectMask on the parent, the X server generates a ConfigureRequest
event, and no further processing is performed. Otherwise, the window is moved.

The XResizeWindow function changes the inside dimensions of the specified window, not
including its borders. This function does not change the window’s upper-left coordinate
or the origin and does not restack the window. Changing the size of a mapped window
may lose its contents and generate Expose events. If a mapped window is made smaller,
changing its size generates Expose events on windows that the mapped window formerly
obscured.

If the override-redirect flag of the window is false and some other client has selected Sub-
structureRedirectMask on the parent, the X server generates a ConfigureRequest
event, and no further processing is performed. If either width or height is zero, a Bad-
Value error results.

The XMoveResizeWindow function changes the size and location of the specified win-
dow without raising it. Moving and resizing a mapped window may generate an Expose
event on the window. Depending on the new size and location parameters, moving and
resizing a window may generate Expose events on windows that the window formerly
obscured.

If the override-redirect flag of the window is false and some other client has selected Sub-
structureRedirectMask on the parent, the X server generates a ConfigureRequest
event, and no further processing is performed. Otherwise, the window size and location
are changed.

The XSetWindowBorderWidth function sets the specified window’s border width to
the specified width.

2.16.7 XMapWindow, XMapRaised, XMapSubwindows

Types:

val XMapWindow: Drawable -> unit
val XMapRaised: Drawable -> unit
val XMapSubwindows: Drawable -> unit

Syntax:

XMapWindow w ;
XMapRaised w ;
XMapSubwindows w ;

Arguments:

w Specifies the window.

Description:

The XMapWindow function maps the window and all of its subwindows that have had
map requests. Mapping a window that has an unmapped ancestor does not display the
window but marks it as eligible for display when the ancestor becomes mapped. Such a
window is called unviewable. When all its ancestors are mapped, the window becomes
viewable and will be visible on the screen if it is not obscured by another window. This
function has no effect if the window is already mapped.

@©Abstract Hardware Ltd 1991,199, X Reference 1.1 109

If the override-redirect of the window is false and if some other client has selected Sub-
structureRedirectMask on the parent window, then the X server generates a MapRe-
quest event, and the XMapWindow function does not map the window. Otherwise, the
window is mapped, and the X server generates a MapNotify event.

If the window becomes viewable and no earlier contents for it are remembered, the X
server tiles the window with its background. If the window’s background is undefined, the
existing screen contents are not altered, and the X server generates zero or more Expose
events. If backing-store was maintained while the window was unmapped, no Expose
events are generated. If backing-store will now be maintained, a full-window exposure is
always generated. Otherwise, only visible regions may be reported. Similar tiling and
exposure take place for any newly viewable inferiors.

If the window is an InputOutputClass window, XMapWindow generates Expose
events on each InputOutputClass window that it causes to be displayed. If the client
maps and paints the window and if the client begins processing events, the window is
painted twice. To avoid this, first ask for Expose events and then map the window, so the
client processes input events as usual. The event list will include Expose for each window
that has appeared on the screen. The client’s normal response to an Expose event should
be to repaint the window. This method usually leads to simpler programs and to proper
interaction with window managers.

The XMapRaised function essentially is similar to XMapWindow in that it maps the
window and all of its subwindows that have had map requests. However, it also raises the
specified window to the top of the stack.

The XMapSubwindows function maps all subwindows for a specified window in top-to-
bottom stacking order. The X server generates Expose events on each newly displayed
window. This may be much more efficient than mapping many windows one at a time
because the server needs to perform much of the work only once, for all of the windows,
rather than for each window.

2.16.8 XQueryPointer
Types:

val XQueryPointer: Drawable -> (bool *
Drawable * Drawable *
XPoint * XPoint * Modifier list)

Syntax:

val (sameScreen,root,child,rootPointer,pointer,modifiers) = XQueryPointer w ;

Arguments:
sameScreen Returns true if the pointer is on the same screen as the specified window.
child Returns the child window that the pointer is located in, if any.
modifiers Returns the current state of the modifier keys and pointer buttons.
root Returns the root window that the pointer is in.
rootPointer Return the pointer coordinates relative to the root window’s origin.

w Specifies the window.

110 X Reference 1.1 ©Abstract Hardware Ltd 1991,1994

pointer Return the pointer coordinates relative to the specified window.

Description:

The XQueryPointer function returns the root window the pointer is logically on and
the pointer coordinates relative to the root window’s origin. If sameScreen is false, the
pointer is not on the same screen as the specified window, and XQueryPointer returns
NoDrawable to child and (0,0) to pointer. If sameScreen is true, the pointer coordi-
nates returned to pointer are relative to the origin of the specified window. In this case,
XQueryPointer returns the child that contains the pointer, if any, or else NoDrawable
to child.

XQueryPointer returns the current logical state of the keyboard buttons and the modifier
keys in modifiers. It sets modifiers to the list of button or modifier key masks to match
the current state of the mouse buttons and the modifier keys.

2.16.9 XQueryTree

Types:
val XQueryTree: Drawable -> (Drawable * Drawable * Drawable list)
Syntax:
val (root,parent,children) = XQueryTree w ;
Arguments:
children Returns a list of children.
parent Returns the parent window.
root Returns the root window.
w Specifies the window whose list of children, root, and parent you want to
obtain.
Description:

The XQueryTree function returns the root window, the parent window, and a list of
children windows for the specified window. The children are listed in current stacking
order, from bottom-most (first) to top-most (last). If it fails, XQueryTree raises exception
XWindows with ”XQueryTree failed” .

2.16.10 XRaiseWindow, XLowerWindow, XCirculateSubwindows,
XCirculateSubwindowsDown, XCirculateSubwindowsUp,

XRestackWindows
Types:
val XRaiseWindow: Drawable -> unit
val XLowerWindow: Drawable -> unit
val XCirculateSubwindows: Drawable -> CirculateDirection -> unit
val XCirculateSubwindowsDown: Drawable -> unit
val XCirculateSubwindowsUp: Drawable -> unit

val XRestackWindows: Drawable list -> unit

@©Abstract Hardware Ltd 1991,199, X Reference 1.1 111

Syntax:

XRaiseWindow w ;

XLowerWindow w ;
XCirculateSubwindows w direction ;
XCirculateSubwindowsDown w ;
XCirculateSubwindowsUp w ;
XRestackWindows windows ;

Arguments:
direction Specifies the direction (up or down) that you want to circulate the window.
You can pass RaiseLowest or LowerHighest.
w Specifies the window.
windows Specifies the list of windows to be restacked.

Argument Type:
datatype CirculateDirection = RaiselLowest | LowerHighest

Description:

The XRaiseWindow function raises the specified window to the top of the stack so that
no sibling window obscures it. If the windows are regarded as overlapping sheets of paper
stacked on a desk, then raising a window is analogous to moving the sheet to the top of the
stack but leaving its x and y location on the desk constant. Raising a mapped window may
generate Expose events for the window and any mapped subwindows that were formerly
obscured.

If the override-redirect attribute of the window is false and some other client has se-
lected SubstructureRedirectMask on the parent, the X server generates a Configur-
eRequest event, and no processing is performed. Otherwise, the window is raised.

The XLowerWindow function lowers the specified window to the bottom of the stack so
that it does not obscure any sibling windows. If the windows are regarded as overlapping
sheets of paper stacked on a desk, then lowering a window is analogous to moving the sheet
to the bottom of the stack but leaving its x and y location on the desk constant. Lowering
a mapped window will generate Expose events on any windows it formerly obscured.

If the override-redirect attribute of the window is false and some other client has se-
lected SubstructureRedirectMask on the parent, the X server generates a Configur-
eRequest event, and no processing is performed. Otherwise, the window is lowered to the
bottom of the stack.

The XCirculateSubwindows function circulates children of the specified window in the
specified direction. If you specify RaiseLowest, XCirculateSubwindows raises the low-
est mapped child (if any) that is occluded by another child to the top of the stack. If you
specify LowerHighest, XCirculateSubwindows lowers the highest mapped child (if
any) that occludes another child to the bottom of the stack. Exposure processing is then
performed on formerly obscured windows. If some other client has selected Substructur-
eRedirectMask on the window, the X server generates a CirculateRequest event, and
no further processing is performed. If a child is actually restacked, the X server generates
a CirculateNotify event.

The XCirculateSubwindowsUp function raises the lowest mapped child of the specified
window that is partially or completely occluded by another child. Completely unobscured

112 X Reference 1.1 ©Abstract Hardware Ltd 1991,199/

children are not affected. This is a convenience function equivalent to XCirculateSub-
windows with RaiseLowest specified.

The XCirculateSubwindowsDown function lowers the highest mapped child of the spec-
ified window that partially or completely occludes another child. Completely unobscured
children are not affected. This is a convenience function equivalent to XCirculateSub-
windows with LowerHighest specified.

The XRestackWindows function restacks the windows in the order specified, from top
to bottom. The stacking order of the first window in the windows list is unaffected, but the
other windows in the list are stacked underneath the first window, in the order of the list.
The stacking order of the other windows is not affected. For each window in the window
list that is not a child of the specified window, a BadMatch error results.

If the override-redirect attribute of a window is false and some other client has selected
SubstructureRedirectMask on the parent, the X server generates ConfigureRequest
events for each window whose override-redirect flag is not set, and no further processing is
performed. Otherwise, the windows will be restacked in top to bottom order.

2.16.11 XReparentWindow

Types:
val XReparentWindow: Drawable -> Drawable -> XPoint -> unit
Syntax:

XReparentWindow w parent topLeft ;

Arguments:

parent Specifies the parent window.

w Specifies the window.

topLeft Specifies the x and y coordinates of the position in the new parent window.
Description:

If the specified window is mapped, XReparentWindow automatically performs an Un-
mapWindow request on it, removes it from its current position in the hierarchy, and inserts
it as the child of the specified parent. The window is placed in the stacking order on top
with respect to sibling windows.

After reparenting the specified window, XReparentWindow causes the X server to gen-
erate a ReparentNotify event. The overrideRedirect member returned in this event is set
to the window’s corresponding attribute. Window manager clients usually should ignore
this window if this member is set to true. Finally, if the specified window was originally
mapped, the X server automatically performs a MapWindow request on it.

The X server performs normal exposure processing on formerly obscured windows. The
X server might not generate Expose events for regions from the initial UnmapWindow
request that are immediately obscured by the final MapWindow request. A BadMatch
error results if the new parent window is not on the same screen as the old parent window,
or if the new parent window is the specified window or an inferior of the specified window,
or if the specified window has a ParentRelative background, and the new parent window
is not the same depth as the specified window.

@©Abstract Hardware Ltd 1991,199, X Reference 1.1 113

2.16.12 XUnmapWindow, XUnmapSubwindows

Types:

val XUnmapWindow: Drawable -> unit

val XUnmapSubwindows: Drawable -> unit
Syntax:

XUnmapWindow w ;

XUnmapSubwindows w ;
Arguments:

w Specifies the window.

Description:

The XUnmapWindow function unmaps the specified window and causes the X server to
generate an UnmapNotify event. If the specified window is already unmapped, XUn-
mapWindow has no effect. Normal exposure processing on formerly obscured windows
is performed. Any child window will no longer be visible until another map call is made on
the parent. In other words, the subwindows are still mapped but are not visible until the
parent is mapped. Unmapping a window will generate Expose events on windows that
were formerly obscured by it.

The XUnmapSubwindows function unmaps all subwindows for the specified window in
bottom-to-top stacking order. It causes the X server to generate an UnmapNotify event
on each subwindow and Expose events on formerly obscured windows. Using this function
is much more efficient than unmapping multiple windows one at a time because the server
needs to perform much of the work only once, for all of the windows, rather than for each
window.

2.17 Window Manager

2.17.1 XSetlconSizes, XGetlconSizes

Types:
val XSetIconSizes: Drawable ->
(XRectangle * XRectangle * XRectangle) list -> unit
val XGetIconSizes: Drawable ->
(XRectangle * XRectangle * XRectangle) list
Syntax:

XSetIconSizes w sizes ;
val sizes = XGetIconSizes w ;

Arguments:

114 X Reference 1.1 ©Abstract Hardware Ltd 1991,1994

sizes Specifies the size list.
w Specifies the window.
Description:

The XSetIconSizes function is used only by window managers to set the supported icon
sizes. The size is specified as (minimum size,maximum size,size increment).

The XGetIconSizes function returns the empty list if a window manager has not set icon
sizes, otherwise it returns a list of supported sizes. XGetIconSizes should be called by
an application that wants to find out what icon sizes would be most appreciated by the
window manager under which the application is running. The application should then use
XSetWMHints to supply the window manager with an icon pixmap or window in one
of the supported sizes.

2.17.2 XSetTransientForHint, XGetTransientForHint

Types:

val XSetTransientForHint: Drawable -> Drawable -> unit
val XGetTransientForHint: Drawable -> Drawable

Syntax:

XSetTransientForHint transientWindow mainWindow ;
val mainWindow = XGetTransientForHint transientWindow ;

Arguments:

transient Window Specifies the transient window.

mainWindow Specifies a more permanent window in the application.
Properties:

WM_TRANSIENT_FOR Set by application programs to indicate to the window
manager a transient top-level window, such as a dialog
box.

Description:

The XSetTransientForHint function sets the WM_TRANSIENT _FOR. property of
transientWindow to mainWindow.

The XGetTransientForHint function returns the WM _TRANSIENT _FOR property
for the specified transientWindow. If the property does not exist then exception XWin-
dows is raised with ”XGetTransientForHint failed” .

2.17.3 XSetWMClass, XGetWMClass

Types:

val XSetWMClass: Drawable -> string list -> unit
val XGetWMClass: Drawable -> string list

@©Abstract Hardware Ltd 1991,199, X Reference 1.1 115

Syntax:

XSetWMClass w class ;
val class = XGetWMClass w ;

Arguments:
class Specifies the class names for the window
w Specifies the window
Properties:
WM_CLASS Set by application programs to allow window and session managers to
obtain the application’s resources from the resource database.
Description:

XSetWMClass sets the WM_CLASS property on the specified window. XGetWM-
Class returns the WM _CLASS property on the specified window.

2.17.4 XSetWMClientMachine, XGet WMClientMachine
Types:

val XSetWMClientMachine: Drawable -> string -> unit
val XGetWMClientMachine: Drawable -> string

Syntax:

XSetWMClientMachine w machine ;
val machine = XGetWMClientMachine w ;

Arguments:

w Specifies the window

machine Specifies the name of the machine on which the application is running.
Properties:

WM_CLIENT _MACHINE The string name of the machine on which the client

application is running.

Description:

The XSetWMClientMachine convenience function performs a XSetProperty on the
WM_CLIENT_MACHINE property.

The XGetWMClientMachine convenience function performs an XGetTextProperty
on the WM_CLIENT_MACHINE property.

116 X Reference 1.1 ©Abstract Hardware Ltd 1991,1994

2.17.5 XSetWMColormapWindows, XGetWMColormapWindows

Types:

val XSetWMColormapWindows: Drawable -> Drawable list -> unit
val XGetWMColormapWindows: Drawable -> Drawable list

Syntax:

XSetWMColormapWindows topWindow colormapWindows ;
val colormapWindows = XGetWMColormapWindows topWindow ;

Arguments:

colormapWindows Specifies the list of windows.

topWindow Specifies one of the application’s top level windows.
Properties:

WM_COLORMAP_WINDOWS List of windows that may need a different col-
ormap than that of their top-level window.

Description:

The XSetWMColormapWin-
dows function replaces the WM _COLORMAP_WINDOWS property on the specified
window with the list of windows specified by the colormapWindows argument. The prop-
erty is stored with a type of XA_WINDOW and a format of 32. If it cannot intern the
WM_COLORMAP _WINDOWS atom, XSet WM ColormapWindows raises excep-
tion XWindows with " XSetWMColormapWindows failed” .

The XGetWM ColormapWindows function returns the list of window identifiers stored
in the WM_COLORMAP_WINDOWS property on the specified window. These iden-
tifiers indicate the colormaps that the window manager may need to install for this
window. If the property exists, is of type WINDOW, is of format 32, and the atom
WM_COLORMAP_WINDOWS can be interned, XGetWMColormapWindows
returns the list of windows. Otherwise, it returns the empty list.

2.17.6 XSetWMCommand, XGetWMCommand

Types:

val XSetWMCommand: Drawable -> string list -> unit
val XGetWMCommand: Drawable -> string list

Syntax:

XSetWMCommand w commands ;
val commands = XGetWMCommand w ;

Arguments:

@©Abstract Hardware Ltd 1991,199, X Reference 1.1 117

w Specifies the window.
commands Specifies the list of strings.
Description:

The XSetWMCommand function sets the WM _COMMAND property on the speci-
fied window. Typically it is set to the command and arguments used to invoke the appli-
cation.

The XGetWMCommand function reads the WM _COMMAND property from the
specified window and returns a string list. If the WM _COMMAND property exists, and
it is of type XA_STRING and format 8 then it is returned as a string list. Otherwise, it
raises exception XWindows with ”XGetWMCommand” .

2.17.7 XSetWMHints, XGetWMHints
Types:

val XSetWMHints: Drawable -> XWMHint list -> unit
val XGetWMHints: Drawable -> XWMHint list

Syntax:

XSetWMHints w hints ;
val hints = XGetWMHints w ;

Arguments:

w Specifies the window
hints Specifies the list of XWMHint values

Argument Type:

datatype XWMStateHint = DontCareState | NormalState | ZoomState
|

IconicState | InactiveState
datatype XWMHint InputHint of bool
StateHint of XWMStateHint

IconWindowHint of Drawable
IconPositionHint of XPoint

|
| IconPixmapHint of Drawable
|
|
| IconMaskHint of Drawable

Argument Description:

The InputHint member is used to communicate to the window manager the input focus
model used by the application. Applications that expect input but never explicitly set
focus to any of their subwindows (that is, use the push model of focus management),
such as X10-style applications that use real-estate driven focus, should set this member
to true. Similarly, applications that set input focus to their subwindows only when it
is given to their top-level window by a window manager should also set this member to
true. Applications that manage their own input focus by explicitly setting focus to one
of their subwindows whenever they want keyboard input (that is, use the pull model of

118 X Reference 1.1 ©Abstract Hardware Ltd 1991,1994

focus management) should set this member to false. Applications that never expect any
keyboard input also should set this member to false.

Pull model window managers should make it possible for push model applications to get
input by setting input focus to the top-level windows of applications whose input member
is true. Push model window managers should make sure that pull model applications
do not break them by resetting input focus to PointerRoot when it is appropriate (for
example, whenever an application whose input member is false sets input focus to one of
its subwindows).

Possible values for the StateHint member are

DontCareState (* don’t know or care *)

NormalState (* most applications want to start this way *)
ZoomState (* application wants to start zoomed *)
IconicState (* application wants to start as an icon *)
InactiveState (* application wants to start invisibly *)

The IconMaskHint member specifies which pixels of the IconPixmapHint member
should be used as the icon. This allows for nonrectangular icons. Both the Icon-
PixmapHint member and the IconMaskHint member must be bitmaps. The Icon-
WindowHint member lets an application provide a window for use as an icon for window
managers that support such use. The IconPositionHint member specifies a position on
the screen for the icon.

Description:

The XSetWMHints function sets the window manager hints that include icon informa-
tion and location, the initial state of the window, and whether the application relies on
the window manager to get keyboard input.

The XGetWMHints function reads the window manager hints and returns the empty
list if no WM _HINT'S property was set on the window or returns a list of XWMHints if
it succeeds.

2.17.8 XSetWMIconName, XGetWMIconName

Types:

val XSetWMIconName: Drawable -> string -> unit
val XGetWMIconName: Drawable -> string

Syntax:

XSetWMIconName w iconName ;
val iconName = XGetWMIconName w ;

Arguments:

iconName Specifies the icon name

w Specifies the window

@©Abstract Hardware Ltd 1991,199, X Reference 1.1 119

Description:

The XSetWMIconName convenience function performs a XSetProperty on the
WM_ICON_NAME property. The XSetWMIconName function sets the name to
be displayed in a window’s icon.

The XGetWMIconName convenience function performs an XGetTextProperty on
the WM_ICON_NAME property. The XGetWMIconName function returns the
name to be displayed in the specified window’s icon. If it succeeds, it returns the name,
otherwise, if no icon name has been set for the window, it raises exception XWindows
with " XGetWMIconName” .

2.17.9 XSetWMName, XGetWMName

Types:

val XSetWMName: Drawable -> string -> unit
val XGetWMName: Drawable -> string

Syntax:

XSetWMName w windowName ;
windowName = XGetWMName w ;

Arguments:
windowName Specifies the window name
w Specifies the window
Description:

The XSetWMName convenience function performs a XSetProperty on the
WM_NAME property. The XSetWMName function assigns the name passed to win-
dowName to the specified window. A window manager can display the window name in
some prominent place, such as the title bar, to allow users to identify windows easily. Some
window managers may display a window’s name in the window’s icon, although they are
encouraged to use the window’s icon name if one is provided by the application.

The XGetWMName convenience function performs an XGetTextProperty on the
WM _NAME property. The XGetWMName function returns the name of the specified
window. If the WM _NAME property has not been set for this window, XGetWMName
raises exception XWindows with ”XGetWMName” .

2.17.10 XSetWMProperties
Types:

val XSetWMProperties: Drawable ->
string -> string -> string list ->
XWMSizeHint list -> XWMHint list ->
string list -> unit

120 X Reference 1.1 ©Abstract Hardware Ltd 1991,1994

Syntax:

XSetWMProperties w windowName iconName commands normalHints wmHints class ;

Arguments:
w Specifies the window
windowName Specifies the window name
iconName Specifies the icon name
commands Specifies the list of strings used to invoke the window
normalHints Specifies the list of XWMSizeHint values for the window
wmHints Specifies the list of XWMHint values for the window
class Specifies the class names for the window
Properties:
WM_CLASS Set by application programs to allow window and ses-

sion managers to obtain the application’s resources
from the resource database.

WM_CLIENT _MACHINE The string name of the machine on which the client
application is running.

WM_COMMAND The command and arguments, separated by ASCII
nulls, used to invoke the application.
WM _HINTS Additional hints set by client for use by the window

manager. The ML type of this property is XWMHints.

WM_ICON_NAME Name to be used in icon.
WM_NAME Name of the application.
WM_NORMAL_HINTS Size hints for a window in its normal state. The ML

type of this property is XWMSizeHint.

Description:

The XSetWMProperties convenience function provides a single programming interface
for setting those essential window properties that are used for communicating with other
clients (particularly window and session managers).

If the windowName argument is not empty, XSetWMProperties calls XSetWM-
Name, which, in turn, sets the WM_NAME property. If the iconName argu-
ment is not empty, XSetWMProperties calls XSetWMIconName, which sets the
WM_ICON_NAME property. If the commands argument is not empty, XSetWM-
Properties calls XSetWMCommand, which sets the WM_COMMAND property.

If the normalHints argument is not empty, XSetWMProperties calls XSetWMNor-
malHints, which sets the WM_NORMAL_HINTS property. If the wmHints argument
is not empty, XSetWMProperties calls XSet WMHints, which sets the WM _HINTS
property. If the class argument is not empty, XSetWMProperties calls XSetWM-
Class, which sets the WM _CLASS property.

@©Abstract Hardware Ltd 1991,199, X Reference 1.1 121

2.17.11 XSetWMSizeHints, XGetWMSizeHints,
XSetWMNormalHints, XGetWMNormalHints

Types:
val XSetWMSizeHints: Drawable -> int -> XWMSizeHint list -> unit
val XGetWMSizeHints: Drawable -> int -> XWMSizeHint list
val XSetWMNormalHints: Drawable -> XWMSizeHint list -> unit
val XGetWMNormalHints: Drawable -> XWMSizeHint list
Syntax:
XSetWMSizeHints w property hints ;
val hints = XGetWMSizeHints w property ;
XSetWMNormalHints w hints ;
val hints = XGetWMNormalHints w ;
Arguments:
w Specifies the window
property Specifies the property atom
hints Specifies the list of XWMSizeHint values

Argument Type:

datatype XWMSizeHint = PPosition of XPoint

| PSize of XRectangle

| PMinSize of XRectangle

| PMaxSize of XRectangle

| PResizeInc of XRectangle

| PAspect of XPoint * XPoint
| PBaseSize of XRectangle

|

PWinGravity of Gravity

Argument Description:

The PPosition and PSize members are now obsolete and are left solely for compatibility
reasons. The PMinSize member specifies the minimum window size that still allows the
application to be useful. The PMaxSize member specifies the maximum window size.
The PResizeInc member defines a size increment which the window prefers to be resized
to. The two points in the PAspect member give minimum and maximum aspect ratios.
They are expressed as ratios of x and y, and they allow an application to specify the range
of aspect ratios it prefers. The PBaseSize member defines the desired size of the window.
The PWinGravity member defines the region of the window that is to be retained when
it is resized.

Description:

The XSetWMSizeHints function replaces the size hints for the specified property on
the named window. If the specified property does not already exist, XSet WM SizeHints
sets the size hints for the specified property on the named window. The property is stored
with a type of WM _SIZE HINTS and a format of 32. To set a window’s normal size
hints, you can use the XSetWMNormalHints function.

122 X Reference 1.1 ©Abstract Hardware Ltd 1991,1994

The XGetWMSizeHints function returns the size hints stored in the specified property
on the named window. If the property is of type WM _SIZE _HINTS, of format 32, and is
long enough to contain either an old (pre-ICCCM) or new size hints structure, XGetWM-
SizeHints returns the list of fields that were supplied by the user. Otherwise, it returns the
empty list. To get a window’s normal size hints, you can use the XGetWMNormalHints
function.

If XGetWMSizeHints returns successfully and a pre-ICCCM size hints property is read,
the list returned may contain the following members:

[PPosition,PSize,PMinSize,PMaxSize,PResizelInc,PAspect]

If the property is large enough to contain the base size and window gravity fields as well,
the list returned may contain the following members:

[PBaseSize,PWinGravity]

The XSetWMNormalHints function replaces
the size hints for the WM_NORMAL_HINTS property on the specified window. If
the property does not already exist, XSetWMNormalHints sets the size hints for the
WM_NORMAL_HINTS property on the specified window. The property is stored with
a type of WM _SIZE _HINTS and a format of 32.

The XGetWMNormalHints function returns the size hints stored in the
WM_NORMAL_HINTS property on the specified window. If the property is of type
WM_SIZE_HINTS, of format 32, and is long enough to contain either an old (pre-
ICCCM) or new size hints structure, XGetWMNormalHints returns the list of fields
that were supplied by the user. Otherwise, it returns the empty list.

If XGetWMDNormalHints returns successfully and a pre-ICCCM size hints property is
read, the list returned may contain the following members:

[PPosition,PSize,PMinSize,PMaxSize,PResizelInc,PAspect]

If the property is large enough to contain the base size and window gravity fields as well,
the list returned may contain the following members:

[PBaseSize,PWinGravity]

2.17.12 XWMGeometry

Types:

val XWMGeometry: string -> string -> int ->
XWMSizeHint list -> XPoint * XRectangle * Gravity

Syntax:

val (topLeft,area,gravity) = XWMGeometry userGeometry
defaultGeometry
borderWidth
sizeHints ;

Arguments:

©Abstract Hardware Ltd 1991,1994

userGeometry
borderWidth
defaultGeometry
sizeHints

topLeft

area

gravity

Description:

X Reference 1.1 123

Specifies the user-specified geometry or empty string.
Specifies the border width.

Specifies the application’s default geometry or empty string.
Specifies the size hints for the window in its normal state.
Return the x and y offsets.

Return the width and height determined.

Returns the window gravity.

The XWMGeometry function combines any geometry information (given in the format
used by XParseGeometry) specified by the user and by the calling program with size hints
(usually the ones to be stored in WM_NORMAL _HINTS) and returns the position, size,
and gravity (NorthWestGravity, NorthEastGravity, SouthEastGravity or South-
WestGravity) that describe the window. If the base size is not set in the XWMSizeHint
list, the minimum size is used if set. Otherwise, a base size of 0 is assumed. If no minimum
size is set in the hints list, the base size is used.

Note that invalid geometry specifications can cause a width or height of 0 to be returned.

124 X Reference 1.1 ©Abstract Hardware Ltd 1991,199/

Chapter 3

Event Reference

3.1 XEvent

Types:

ButtonRelease of ...
CirculateNotify of
ColormapNotify of
ConfigureRequest of

ButtonPress of
ButtonClick of
CirculateRequest of
ConfigureNotify of

datatype ’a XEvent

SelectionNotify of
VisibilityNotify of
Message of

SelectionRequest of
DeleteRequest of

I

|

I

|
CreateNotify of | DestroyNotify of
EnterNotify of | LeaveNotify of
Expose of | FocusIn of
FocusOut of | GraphicsExpose of
NoExpose of | GravityNotify of
KeymapNotify of | KeyPress of
KeyRelease of | MapNotify of
UnmapNotify of | MapRequest of
MotionNotify of | ReparentNotify of
ResizeRequest of | SelectionClear of

I

[

Description:

The XEvent type is a union of the individual types returned for each different type of
event. Event handlers typically pattern-match on the XEvent members, choosing to
match events that they are interested in, and then a default pattern match to provide a
default action for all other events. For example:

fun Handler (Expose {window,region,...},state) = ...

| Handler (EnterNotify {window,...l},state)
| Handler (LeaveNotify {window,...l},state)

| Handler (MotionNotify {window,pointer,...},state) = ...

| Handler (_,state) = state ; (* default is to do nothing *)

125

126

X Reference 1.1 ©Abstract Hardware Ltd 1991,1994

All the event types have a sendEvent member which is set to true if the event came from
a SendEvent protocol request. Most events also contain a time member, which is the time

at

which the event occurred.

3.2 ButtonPress, ButtonRelease, KeyPress, KeyRelease,

Types:

MotionNotify

datatype Modifier = ShiftMask | LockMask | ControlMask
| ModiMask | Mod2Mask | Mod3Mask
| Mod4Mask | Mod5Mask
| ButtoniMask | Button2Mask | Button3Mask
| Button4Mask | ButtonSMask
| AnyModifier ;
datatype ButtonName = Buttonl | Button2 | Button3
| Button4 | Buttonb5 | AnyButton ;
ButtonPress of { sendEvent: bool,
window: Drawable,
root: Drawable,
subwindow: Drawable,
time: int,
pointer: XPoint,
rootPointer: XPoint,
modifiers: Modifier list,
button: ButtonName }
ButtonRelease of { sendEvent: bool,
window: Drawable,
root: Drawable,
subwindow: Drawable,
time: int,
pointer: XPoint,
rootPointer: XPoint,
modifiers: Modifier list,
button: ButtonName }
ButtonClick of { sendEvent: bool,
window: Drawable,
root: Drawable,
subwindow: Drawable,
time: int,
pointer: XPoint,
rootPointer: XPoint,
modifiers: Modifier list,
button: ButtonName,
up: int, (* number of up transitions *)
down: int } (* number of down transitions *)
KeyPress of { sendEvent: bool,
window: Drawable,
root: Drawable,

@©Abstract Hardware Ltd 1991,199, X Reference 1.1 127

subwindow: Drawable,
time: int,

pointer: XPoint,
rootPointer: XPoint,
modifiers: Modifier list,
keycode: int }

KeyRelease of { sendEvent: bool,

window: Drawable,
root: Drawable,
subwindow: Drawable,
time: int,

pointer: XPoint,
rootPointer: XPoint,
modifiers: Modifier list,
keycode: int }

MotionNotify of { sendEvent: bool,

window: Drawable,
root: Drawable,
subwindow: Drawable,
time: int,

pointer: XPoint,
rootPointer: XPoint,
modifiers: Modifier list,
isHint: bool }

Description:

These structures have the following common members: window, root, subwindow, time,
pointer, rootPointer, and modifiers. The window member is set to the window on which
the event was generated and is referred to as the event window. The root member is
set to the source window’s root window. The rootPointer member is set to the pointer’s
coordinates relative to the root window’s origin at the time of the event.

If the source window is an inferior of the event window, the subwindow member of the
structure is set to the child of the event window that is the source member or an ancestor
of it. Otherwise, the X server sets the subwindow member to NoDrawable. The time
member is set to the time when the event was generated and is expressed in milliseconds.

If the event window is on the same screen as the root window, the pointer member is set
to the coordinates relative to the event window’s origin. Otherwise, this member is set to
(0,0).

The modifiers member is set to indicate the state of the pointer buttons and modifier keys
just prior to the event. It is a list of button or modifier key masks: ButtonlMask, But-
ton2Mask, Button3Mask, Button4dMask, Button5Mask, ShiftMask, LockMask,
ControlMask, Mod1Mask, Mod2Mask, Mod3Mask, Mod4Mask, Mod5Mask.

KeyPress and KeyRelease events have a member called keycode. It is set to a number
that represents a physical key on the keyboard. The keycode is an arbitrary representation
for any key on the keyboard.

ButtonPress and ButtonRelease events have a member called button. It represents the
pointer button that changed state and can be Buttonl, Button2, Button3, Button4,
or Buttonb5.

The ButtonClick event can be used as an alternative to the ButtonPress and Button-
Release combinations. It returns the number of up and down transitions of the pointer

128 X Reference 1.1 ©Abstract Hardware Ltd 1991,1994

button in a small predetermined time interval. In this way it is easy to detect double and
triple clicks.

MotionNotify events have a member called isHint. It can be set to true or false.

3.3 CirculateNotify

Types:

datatype Placement = PlaceOnTop | PlaceOnBottom ;

CirculateNotify of { sendEvent: bool,

event: Drawable,
window: Drawable,
place: Placement }

Description:

The event member is set either to the restacked window or to its parent, depending on
whether StructureNotifyMask or SubstructureNotifyMask was selected. The win-
dow member is set to the window that was restacked. The place member is set to the win-
dow’s position after the restack occurs and is either PlaceOnTop or PlaceOnBottom.
If it is PlaceOnTop, the window is now on top of all siblings. If it is PlaceOnBottom,
the window is now below all siblings.

3.4 CirculateRequest

Types:

datatype Placement = PlaceOnTop | PlaceOnBottom ;

CirculateRequest of { sendEvent: bool,

parent: Drawable,
window: Drawable,
place: Placement }

Description:

The parent member is set to the parent window. The window member is set to the sub-
window to be restacked. The place member is set to what the new position in the stacking
order should be and is either PlaceOnTop or PlaceOnBottom. If it is PlaceOnTop,
the subwindow should be on top of all siblings. If it is PlaceOnBottom, the subwindow
should be below all siblings.

3.5 ColormapNotify

Types:

@©Abstract Hardware Ltd 1991,199, X Reference 1.1 129

ColormapNotify of { sendEvent: bool,

window: Drawable,
colormap: Colormap,
new: bool,

installed: bool }

Description:

The window member is set to the window whose associated colormap is changed, installed,
or uninstalled. For a colormap that is changed, installed, or uninstalled, the colormap
member is set to the colormap associated with the window. For a colormap that is changed
by a call to XFreeColormap, the colormap member is set to NoColormap. The new
member is set to indicate whether the colormap for the specified window was changed or
installed or uninstalled and can be true or false. If it is true, the colormap was changed.
If it is false, the colormap was installed or uninstalled. The installed member is always set
to indicate whether the colormap is installed or uninstalled.

3.6 ConfigureNotify

Types:

ConfigureNotify of { sendEvent: bool,
event: Drawable,
window: Drawable,
position: XPoint,
size: XRectangle,
borderWidth: int,
above: Drawable,
overrideRedirect: bool }

Description:

The event member is set either to the reconfigured window or to its parent, depending
on whether StructureNotifyMask or SubstructureNotifyMask was selected. The
window member is set to the window whose size, position, border, and/or stacking order
was changed.

The position member is set to the coordinates relative to the parent window’s origin and
indicates the position of the upper-left outside corner of the window. The size member is
set to the inside size of the window, not including the border. The borderWidth member
is set to the width of the window’s border, in pixels.

The above member is set to the sibling window and is used for stacking operations. If the
X server sets this member to NoDrawable, the window whose state was changed is on
the bottom of the stack with respect to sibling windows. However, if this member is set
to a sibling window, the window whose state was changed is placed on top of this sibling
window.

The overrideRedirect member is set to the override-redirect attribute of the window. Win-
dow manager clients normally should ignore this window if the overrideRedirect member
is true.

130 X Reference 1.1 ©Abstract Hardware Ltd 1991,1994
3.7 ConfigureRequest

Types:

datatype StackMode = Above | Below | TopIf | BottomIf | Opposite ;

ConfigureRequest of { sendEvent: bool,

parent: Drawable,
window: Drawable,
position: XPoint,
size: XRectangle,
borderWidth: int,

above: Drawable,
detail: StackMode }

Description:

The parent member is set to the parent window. The window member is set to the window
whose size, position, border width, and/or stacking order is to be reconfigured.

3.8 CreateNotify

Types:

CreateNotify of { sendEvent: bool,
parent: Drawable,
window: Drawable,
position: XPoint,
size: XRectangle,
borderWidth: int,
overrideRedirect: bool }

Description:

The parent member is set to the created window’s parent. The window member specifies
the created window. The position member is set to the created window’s coordinates
relative to the parent window’s origin and indicates the position of the upper-left outside
corner of the created window. The size member is set to the inside size of the created
window (not including the border) and is always nonzero. The borderWidth member is
set to the width of the created window’s border, in pixels. The overrideRedirect member
is set to the override-redirect attribute of the window. Window manager clients normally
should ignore this window if the overrideRedirect member is true.

3.9 DeleteRequest

Types:

DeleteRequest of { window: Drawable }

@©Abstract Hardware Ltd 1991,199, X Reference 1.1 131

Description:

This event is generated when the window manager tries to destroy a top level window.
Instead of the window being destroyed the window manager sends this event to the ap-
plication. The application can either ignore the event, or, typically, it can will perform
some save operations and then destroy the window itself. The window member is set to
the window that is to be destroyed.

3.10 DestroyNotify

Types:

DestroyNotify of { sendEvent: bool,
event: Drawable,
window: Drawable }

Description:

The event member is set either to the destroyed window or to its parent, depending on
whether StructureNotifyMask or SubstructureNotifyMask was selected. The win-
dow member is set to the window that is destroyed.

3.11 EnterNotify, LeaveNotify, NotifyMode, NotifyDetail

Types:
datatype NotifyMode = NotifyNormal
| NotifyGrab
| NotifyUngrab
| NotifyWhileGrabbed ;
datatype NotifyDetail = NotifyAncestor | NotifyVirtual
| NotifyInferior | NotifyNonLinear
| NotifyNonLinearVirtual | NotifyPointer
| NotifyPointerRoot | NotifyDetailNone ;

EnterNotify of { sendEvent: bool,

window: Drawable,

root: Drawable,
subwindow: Drawable,

time: int,

pointer: XPoint,
rootPointer: XPoint,

mode: NotifyMode,
detail: NotifyDetail,
focus: bool,
modifiers: Modifier list }

LeaveNotify of { sendEvent: bool,
window: Drawable,
root: Drawable,
subwindow: Drawable,

132 X Reference 1.1 ©Abstract Hardware Ltd 1991,1994

time: int,

pointer: XPoint,
rootPointer: XPoint,

mode: NotifyMode,
detail: NotifyDetail,
focus: bool,
modifiers: Modifier list }

Description:

The window member is set to the window on which the EnterNotify or LeaveNotify
event was generated and is referred to as the event window. This is the window used by
the X server to report the event, and is relative to the root window on which the event
occurred. The root member is set to the root window of the screen on which the event
occurred.

For a LeaveNotify event, if a child of the event window contains the initial position of
the pointer, the subwindow component is set to that child. Otherwise, the X server sets
the subwindow member to NoDrawable. For an EnterNotify event, if a child of the
event window contains the final pointer position, the subwindow component is set to that
child or NoDrawable.

The time member is set to the time when the event was generated and is expressed in
milliseconds. The pointer member is set to the coordinates of the pointer position in the
event window. This position is always the pointer’s final position, not its initial position.
If the event window is on the same screen as the root window, pointer is the pointer
coordinates relative to the event window’s origin. Otherwise, pointer is set to (0,0). The
rootPointer member is set to the pointer’s coordinates relative to the root window’s origin
at the time of the event.

The focus member is set to indicate whether the event window is the focus window or an
inferior of the focus window. The X server can set this member to either true or false. If
true, the event window is the focus window or an inferior of the focus window. If false, the
event window is not the focus window or an inferior of the focus window.

The modifiers member is set to indicate the state of the pointer buttons and modifier keys
just prior to the event. It is a list of button or modifier key masks: Button1Mask, But-
ton2Mask, Button3Mask, Button4Mask, Button5Mask, ShiftMask, LockMask,
ControlMask, Mod1Mask, Mod2Mask, Mod3Mask, Mod4Mask, Mod5Mask.

The mode member is set to indicate whether the events are normal events, pseudo-motion
events when a grab activates, or pseudo-motion events when a grab deactivates. The X
server can set this member to NotifyNormal, NotifyGrab, or NotifyUngrab.

The detail member is set to indicate the notify detail and can be Notify Ancestor, No-
tify Virtual, NotifyInferior, NotifyNonLinear, or NotifyNonLinearVirtual.

3.12 Expose

Types:

Expose of { sendEvent: bool,
window: Drawable,
region: XRectangle,
count: int }

@©Abstract Hardware Ltd 1991,199, X Reference 1.1 133

Description:

The window member is set to the exposed (damaged) window. The region member is
set to the damaged area within the window. The count member is set to the number of
Expose events that are to follow. If count is zero, no more Expose events follow for
this window. However, if count is nonzero, at least that number of Expose events (and
possibly more) follow for this window. Simple applications that do not want to optimize
redisplay by distinguishing between subareas of its window can just ignore all Expose
events with nonzero counts and perform full redisplays on events with zero counts.

3.13 Focusln, FocusOut

Types:

FocusIn of { sendEvent: bool,

window: Drawable,
mode: NotifyMode,
detail: NotifyDetail }

FocusOut of { sendEvent: bool,

window: Drawable,
mode: NotifyMode,
detail: NotifyDetail }

Description:

The window member is set to the window on which the FocusIn or FocusOut event was
generated. This is the window used by the X server to report the event. The mode mem-
ber is set to indicate whether the focus events are normal focus events, focus events while
grabbed, focus events when a grab activates, or focus events when a grab deactivates. The
X server can set the mode member to NotifyNormal, NotifyWhileGrabbed, Notify-
Grab, or NotifyUngrab.

All FocusOut events caused by a window unmap are generated after any UnmapNotify
event; however, the X protocol does not constrain the ordering of FocusOut events with
respect to generated EnterNotify, LeaveNotify, VisibilityNotify, and Expose events.

Depending on the event mode, the detail member is set to indicate the notify detail and
can be NotifyAncestor, NotifyVirtual, NotifyInferior, NotifyNonLinear, Noti-
fyNonLinearVirtual, NotifyPointer, NotifyPointerRoot, or NotifyDetailNone.

3.14 GraphicsExpose, NoExpose

Types:

datatype GraphicsCode = CopyArea | CopyPlane ;

GraphicsExpose of { sendEvent: bool,

window: Drawable,
region: XRectangle,
count: int,

code: GraphicsCode }

134 X Reference 1.1 ©Abstract Hardware Ltd 1991,1994

NoExpose of { sendEvent: bool,
window: Drawable,
code: GraphicsCode }

Description:

Both structures have drawable and code as common members. The drawable member is
set to the drawable of the destination region on which the graphics request was to be
performed. The code member is set to the graphics request initiated by the client and can
be either CopyArea or CopyPlane. If it is CopyArea, a call to XCopyArea initiated
the request. If it is CopyPlane, a call to XCopyPlane initiated the request.

The GraphicsExpose structure has these additional members: region, and count. The
region member is set to the area within the drawable. The count member is set to the
number of GraphicsExpose events to follow. If count is zero, no more GraphicsExpose
events follow for this window. However, if count is nonzero, at least that number of
GraphicsExpose events (and possibly more) are to follow for this window.

3.15 GravityNotify

Types:

GravityNotify of { sendEvent: bool,
event: Drawable,
window: Drawable,
position: XPoint }

Description:

The event member is set either to the window that was moved or to its parent, depending
on whether StructureNotifyMask or SubstructureNotifyMask was selected. The
window member is set to the child window that was moved. The position member is set
to the coordinates relative to the new parent window’s origin and indicates the position of
the upper-left outside corner of the window.

3.16 KeymapNotify

Types:

KeymapNotify of { sendEvent: bool,
window: Drawable,
keyVector: bool list (* 256 bools *) }

Description:

The keyVector member is set to the bit vector of the keyboard. The vector is returned
as a list of 256 bools, representing the keys 0 to 255 in that order. Each bool set to true
indicates that the corresponding key is currently pressed.

@©Abstract Hardware Ltd 1991,199, X Reference 1.1 135

3.17 MapNotify

Types:

MapNotify of { sendEvent: bool,
event: Drawable,
window: Drawable,
overrideRedirect: bool }

Description:

The event member is set either to the window that was mapped or to its parent, depending
on whether StructureNotifyMask or SubstructureNotifyMask was selected. The
window member is set to the window that was mapped. The overrideRedirect member
is set to the override-redirect attribute of the window. Window manager clients normally
should ignore this window if the override-redirect attribute is true, because these events
usually are generated from pop-ups, which override structure control.

3.18 MapRequest

Types:

MapRequest of { sendEvent: bool,
parent: Drawable,
window: Drawable }

Description:

The parent member is set to the parent window. The window member is set to the window
to be mapped.

3.19 Message

Types:
Message of { window: Drawable, message: ’a } ;
Description:
This event is received when a message is sent to a window. The only way to send a message

to a window is to call the message-sender function returned by XSetHandler. This will
only allow a strongly typed messages to be sent.

3.20 ReparentNotify

Types:

136 X Reference 1.1 ©Abstract Hardware Ltd 1991,1994

ReparentNotify of { sendEvent: bool,
event: Drawable,
window: Drawable,
parent: Drawable,
position: XPoint,

overrideRedirect: bool }

Description:

The event member is set either to the reparented window or to the old or the new par-
ent, depending on whether StructureNotifyMask or SubstructureNotifyMask was
selected. The window member is set to the window that was reparented. The parent
member is set to the new parent window. The position member is set to the reparented
window’s coordinates relative to the new parent window’s origin and defines the upper-left
outer corner of the reparented window. The overrideRedirect member is set to the override-
redirect attribute of the window specified by the window member. Window manager clients
normally should ignore this window if the overrideRedirect member is true.

3.21 ResizeRequest

Types:

ResizeRequest of { sendEvent: bool,
window: Drawable,
size: XRectangle }

Description:

The window member is set to the window whose size another client attempted to change.
The size member is set to the inside size of the window, excluding the border.

3.22 SelectionClear

Types:

SelectionClear of { sendEvent: bool,
window: Drawable,
selection: int,
time: int }

Description:

The window member is set to the window losing ownership of the selection. The selection
member is set to the selection atom. The time member is set to the last change time
recorded for the selection. The owner member is the window that was specified by the
current owner in its XSetSelectionOwner call.

@©Abstract Hardware Ltd 1991,199, X Reference 1.1 137

3.23 SelectionNotify

Types:

SelectionNotify of { sendEvent: bool,
requestor: Drawable,
selection: int,

target: int,
property: int,
time: int }

Description:

The requestor member is set to the window associated with the requestor of the selec-
tion. The selection member is set to the atom that indicates the selection. For example,
XA _PRIMARY is used for the primary selection. The target member is set to the atom
that indicates the converted type. For example, XA PIXMAP is used for a pixmap. The
property member is set to the atom that indicates which property the result was stored
on. If the conversion failed, the property member is set to zero. The time member is set
to the time the conversion took place and can be a timestamp or CurrentTime.

3.24 SelectionRequest

Types:

SelectionRequest of { sendEvent: bool,
owner: Drawable,
requestor: Drawable,
selection: int,

target: int,
property: int,
time: int }

Description:

The owner member is set to the window owning the selection and is the window that was
specified by the current owner in its XSetSelectionOwner call. The requestor member
is set to the window requesting the selection. The selection member is set to the atom
that names the selection. For example, XA _PRIMARY is used to indicate the primary
selection. The target member is set to the atom that indicates the type the selection is
desired in. The property member can be a property name or zero. The time member is set
to the time and is a timestamp or CurrentTime from the XConvertSelection request.

3.25 UnmapNotify

Types:
UnmapNotify of { sendEvent: bool,
event: Drawable,
window: Drawable,

fromConfigure: bool }

138 X Reference 1.1 ©Abstract Hardware Ltd 1991,1994

Description:

The event member is set either to the unmapped window or to its parent, depending on
whether StructureNotifyMask or SubstructureNotifyMask was selected. This is the
window used by the X server to report the event. The window member is set to the window
that was unmapped. The fromConfigure member is set to true if the event was generated
as a result of a resizing of the window’s parent when the window itself had a winGravity
of UnmapGravity.

3.26 VisibilityNotify

Types:

datatype Visibility = VisibilityUnobscured
| VisibilityPartiallyObscured
|

VisibilityObscured ;

VisibilityNotify of { sendEvent: bool,
window: Drawable,
visibility: Visibility }

Description:

The window member is set to the window whose visibility state changes. The state member
is set to the state of the window’s visibility and can be VisibilityUnobscured, Visibil-
ityPartiallyObscured, or VisibilityObscured. The X server ignores all of a window’s
subwindows when determining the visibility state of the window and processes Visibili-
tyNotify events according to the following:

When the window changes state from partially obscured, fully obscured, or not view-
able to viewable and completely unobscured, the X server generates the event with
the state member of the VisibilityNotify structure set to VisibilityUnobscured.
When the window changes state from viewable and completely unobscured or not
viewable to viewable and partially obscured, the X server generates the event with
the state member of the VisibilityNotify structure set to VisibilityPartiallyOb-
scured.

When the window changes state from viewable and completely unobscured, viewable
and partially obscured, or not viewable to viewable and fully obscured, the X server
generates the event with the state member of the VisibilityNotify structure set to
VisibilityObscured.

Chapter 4

Protocol Error Messages

4.1 BadAccess

Description:
XFreeColors pixel not allocated.
XSelectInput selecting event that can only be selected by one client at a
time, when another client already has it selected.
XStoreColors pixel not allocated, or allocated read-only.
XStoreNamedColor pixel not allocated, or allocated read-only.

4.2 BadAlloc

Description:

The server failed to allocate the requested resource.

4.3 BadAtom

Description:

A value for an atom argument does not name a defined atom.

4.4 BadColor

Description:

A value for a Colormap argument does not name a defined Colormap. ML type-checking
should avoid this error.

139

140 X Reference 1.1 ©Abstract Hardware Ltd 1991,1994

4.5 BadCursor

Description:

A value for a Cursor argument does not name a defined Cursor. ML type-checking
should avoid this error.

4.6 BadDrawable

Description:

A value for a Drawable argument does not name a defined Window or Pixmap. ML
type-checking should avoid this error.

4.7 BadFont

Description:

A value for a Font argument does not name a defined Font. ML type-checking should
avoid this error.

4.8 BadGC

Description:

A value for a GC argument does not name a defined GC. ML type-checking should avoid
this error.

4.9 BadImplementation

Description:

The server does not implement some aspect of the request. This should never occur in
Xlib since only standard requests are made.

4.10 BadIDChoice, BadLength

Description:

Internal Xlib error.

@©Abstract Hardware Ltd 1991,199, X Reference 1.1 141
4.11 BadMatch

Description:

Some argument, or arguments, have the correct type and range, but fail to 'match’ in some

other way.

XChangeWindowAtrributes

Changing the background or border of an In-
putOnlyClass window.

XClearArea InputOnlyClass window specified.

XClearWindow InputOnlyClass window specified.

XConfigureWindow Sibling incorrectly specified, or changing the
background or border of an InputOnlyClass
window.

XCopyArea The drawables must have the same root and
depth.

XCopyPlane The drawables must have the same root.

XCreateColormap Visual type not supported, or bad Alloc-
Type.

XSetWindowColormap Colormap has different visual type to win-

XCreatePixmapCursor

XChangeGC

XPutImage

XGetImage

XGetSubImage

XRestackWindows

XCreatePixmapFromBitmapData

dow.

Masks must have depth of 1, and must be the
same size, and the hotspot must be within
that size.

Tile pixmap must have the same root and
depth as the GC. Stipple pixmap must have
depth of 1 and must have the same root as the
GC. Clip-mask pixmap must have depth of 1
and must have the same root as the GC. Us-
ing a GC with a Drawable of different root
or depth results in BadMatch.

If XYBitmap format is used, the depth must
be 1. For XYPixmap and ZPixmap, the
depth must match the depth of the drawable.

Specified area not within the source drawable.
Specified area not within the source drawable.

Specified window is not child window.

Depth must be supported by screen.

XReparentWindow New parent is not on same screen as old par-
ent.
XSetClipRectangles Incorrect ordering.

XSetInputFocus

Focus window must be viewable.

142 X Reference 1.1 ©Abstract Hardware Ltd 1991,1994

4.12 BadPixmap

Description:

A value for a Pixmap does not name a defined Pixmap. ML type-checking should avoid
this error.

4.13 BadRequest

Description:

This should never occur in Xlib since only standard requests are made.

4.14 BadValue

Description:

Some numeric value falls outside the range of values accepted by the request.

XAllocColorCells Number of colours must be positive and planes must be
non-negative.

X AllocColorPlanes Number of colours must be positive, and reds, green and
blues must be non-negative

XFreeColors Specified pixel is not a valid index into the colormap.

XBell Percent must be 100 to 100.

XResizeWindow Window width must be non-zero.

XCopyPlane Plane must have one bit set to 1, and specify an existing
plane.

XCreateGlyphCursor Source char and mask char must exist in the font.

XSetDashes Dash elements must be positive and less than 256.

XCreatePixmap Specified width must be non-zero, and depth must be sup-
ported.

XSetScreenSaver Incorrect timeout value.

XStoreColors Specified pixel is not a valid index into the colormap.

4.15 BadWindow

Description:

A value for a Window does not name a defined Window. ML type-checking should avoid
this error.

Index

A
Above 107, 130
AboveOf 66, 67
AddPoint 66
AllocAll 24, 25
AllocNone 24, 25
AllocType 24, 141
AllowExposures 11, 94
AllPlanes 31, 72
Always 35, 100, 102, 103, 105
And 15
AnyButton 126
AnyModifier 126
ArcChord 51, 75, 76
ArcPieSlice 51, 75, 76
Area 43, 46, 49, 51, 67, 68, 97
B

BackingStore 35, 100, 102, 105
BadAccess 19, 22, 106, 139
BadAlloc 139
BadAtom 139
BadColor 139
BadCursor 140
BadDrawable 140
BadFont 49, 140
BadGC 140
BadIDChoice 140
BadImplementation 140
BadLength 140
BadMatch 24, 25, 29, 40, 41, 42, 57, 74,

75, 76, 78, 83, 84, 89, 97, 100, 101,

106, 107, 112, 141
BadPixmap 142
BadRequest 142

BadValue 18, 19, 22, 29, 42, 75, 79, 94, 96
98, 107, 108, 142

BadWindow 142
Below 107, 130
BelowOf 66, 67
BitmapBitOrder 31
BitmapFilelnvalid 97
BitmapNoMemory 97

143

BitmapOpenFailed
BitmapPad
BitmapStatus
BitmapSuccess
BitmapUnit
BlackPixel

Blanking

Bottom

BottomlIf
BottomLeft
BottomRight
Buttonl
Button1Mask
Button1MotionMask
Button2
Button2Mask
Button2MotionMask
Button3
Button3Mask
Button3MotionMask
Button4
Button4Mask
Button4MotionMask
Buttonb
ButtonbMask
Button5MotionMask
ButtonClick
ButtonClickMask
ButtonMotionMask
ButtonName
ButtonPress
ButtonPressMask
ButtonRelease
ButtonReleaseMask
ByteOrder

C
CapButt
CapNotLast
CapProjecting
CapRound
CellsOfScreen
CenterGravity

126,

126,

126,

126,

126,

125,

54, 125,

125,

97

31

96, 97
97

32

15, 16
94
67, 68
107, 130
67, 68
67, 68
126, 127
127, 132
54

126, 127
127, 132
54

126, 127
127, 132
54

126, 127
127, 132
54

126, 127
127, 132
54

126, 127
54

54

126
126, 127
54, 106
126, 127
54

32

73, 74, 82
73, 74, 82
73, 74, 82
73, 74, 82

32
102, 103

144

CharAscent 59, 60
CharAttributes 59
CharDescent 59, 60
CharLBearing 59
CharRBearing 59
CharWidth 59, 60
CirculateDirection 110, 111
CirculateNotify 111, 125, 128
CirculateRequest 54, 111, 125, 128
ClipByChildren 40, 75, 84
ColormapChangeMask 54
ColormapFExists 33
ColormapID 33
ColormapNotify 25, 26, 105, 125, 128
Complex 49, 50
ConfigureNotify 125, 129
ConfigureRequest 54, 108, 111, 112, 125,

130

ControlDown 52, 53
ControlMask 53, 126, 127, 132
Convex 49, 50
CoordMode 45, 46, 49
CoordModeOrigin 45, 46, 49, 50
CoordModePrevious 45, 46, 49, 50
CopyArea 42, 133, 134
CopyFromParentClass 99, 100, 102
CopyFromParentDrawable 37, 105, 106
CopyFromParentVisual 37, 100
CopyPlane 133, 134
CreateNotify 100, 101, 125, 130
CurrentTime 56, 57, 93, 137
CursorExists 14, 33
CursorID 33
CursorShape 39, 40
CWBackingPixel 100, 105
CWBackingPlanes 100, 105
CWBackingStore 100, 105
CWBackPixel 100, 105
CWBackPixmap 100, 105
CWBIitGravity 100, 105
CWBorderPixel 100, 105
CWBorderPixmap 100, 105
CWBorderWidth 107
CWColormap 100, 105
CWCursor 100, 105
CWDontPropagate 100, 105
CWEventMask 100, 105
CWOverrideRedirect 100, 105
CWPosition 107
CWSaveUnder 100, 105
CWSibling 107
CWSize 107
CWStackMode 107

X Reference 1.1

CWWinGravity

D
Data
DefaultBlanking
DefaultColormap
DefaultDepth
DefaultExposures
DefaultGC
DefaultVisual
DeleteRequest
DestroyNotify
DestructArea
DestructRect
DirectColor
DisplayCells
DisplayConnected
DisplayHeight
DisplayHeight MM
DisplayPlanes
DisplayString
DisplayWidth
DisplayWidthMM
DoesBackingStore
DoesSaveUnders
DontAllowExposures
DontCareState
DontPreferBlanking
DrawableExists
DrawablelD

E
EastGravity
EnterNotify
EnterWindowMask
EvenOddRule
EventMask
EventMaskOfScreen
Expose

©Abstract Hardware Ltd 1991,1994

100, 105

87
94

22

22, 23

94

70

34

125, 130
101, 125, 131
67, 68

67

18, 19, 23, 24, 25
23

34

34

34

35

35

34

34

35

36

94

117, 118
94

14, 33

33

102, 103

55, 125, 131, 132, 133

54
75, 80

36, 54, 100, 102, 105

36

40, 41, 55, 68, 95, 101, 107, 108

109, 111, 112, 113, 125, 132, 133

ExposureMask
Exposures

F
FillOpaqueStippled
FillSolid
FillStippled
FillTiled
FocusChangeMask
Focusln
FocusOut

54
94

42, 74, 80
44, 74, 80
74, 80

11, 74, 80
54

57, 125, 133
57, 125, 133

@©Abstract Hardware Ltd 1991,199, X Reference 1.1

FontDirection 59, 60, 61, 64
FontExists 14, 33
FontID 33
FontLeft ToRight 61, 62, 65
FontRightToLeft 61, 62, 65
ForgetGravity 102, 103
FSAllCharsExist 59
FSAscent 59
FSDefaultChar 59
FSDescent 59
FSDirection 59
FSFont 59
FSMaxBounds 59, 60
FSMaxBytel 59
FSMaxChar 59
FSMaxHeight 59, 60
FSMaxWidth 59, 60
FSMinBounds 59, 60
FSMinBytel 59
FSMinChar 59
FSMinHeight 59, 60
FSMinWidth 59, 60
G
GCArcMode 71,75, 76
GCBackground 71
GCCapStyle 71, 73, 82
GCClipMask 71
GCClipOrigin 71
GCDashList 71
GCDashOffset 71
GCExists 14, 33
GCFillRule 71, 75,79, 80
GCFillStyle 71, 74, 80
GCFont 71
GCForeground 71
GCFunction 71, 81, 83
GCGraphicsExposures 71
GCID 33
GCJoinStyle 71, 73, 82
GCLineStyle 71, 73, 82
GCLineWidth 71
GCOrder 77,78
GCPlaneMask 71, 72
GCStipple 71
GCSubwindowMode 71, 75, 84
GCTile 71
GCTSOrigin 71
GraphicsCode 133
GraphicsExpose 41, 75, 82, 125, 133, 134
Gravity 100, 102, 105, 121, 122
GravityNotify 125, 134

145

GrayScale 18, 23, 24, 25, 27, 29
GXand 71
GXandInverted 71
GXandReverse 71
GXclear 71
GXcopy 41, 44, 71
GXcopylnverted 71
GXequiv 71
GXinvert 71
GXnand 71
GXnoop 71
GXnor 71
GXor 71
GXorInverted 71
GXorReverse 71
GXset 71
GXxor 71
H
Height 67, 68
Horizontally Abutting 66, 67
I
IconicState 117, 118
TconMaskHint 117, 118
IconPixmapHint 117, 118
IconPositionHint 117, 118
IconWindowHint 117, 118
ImageByteOrder 85
ImageData 87
ImageDepth 85
ImageFormat 86, 87, 88
ImageOrder 31, 32, 85, 87
ImageSize 85
InactiveState 117, 118
Includelnferiors 75, 84
IncludePoint 69
InputFocus 37
InputHint 117

InputOnlyClass 41, 96, 99, 100, 101, 102,
103, 104, 106, 107, 141

InputOutputClass 75, 99, 100, 101, 102,
103, 109
Inside 66, 67
Intersection 67
IsCursorKey 52
IsFunctionKey 52
IsKeypadKey 52
IsMiscFunctionKey 52
IsModifierKey 52
IsPFKey 52

IsUnmapped 102, 103

146

IsUnviewable
IsViewable

J
JoinBevel
JoinMiter
JoinRound

K
KeymapNotify
KeymapStateMask
KeyPress
KeyPressMask
KeyRelease
KeyReleaseMask

L
LeaveNotify
LeaveWindowMask
Left
LeftOf
LineDoubleDash
LineOnOffDash
LineSolid
LockMask
LowerHighest
LSBFirst

M
MakeRect
MapNotify
MapRequest
MapState
MaxCmapsOfScreen
Message
MinCmapsOfScreen
Mod1Mask
Mod2Mask
Mod3Mask
Mod4Mask
Mod5Mask
Modifier
MotionNotify
MSBFirst

N

NegativePoint
NoColormap
NoCursor

102, 103
102, 103

73, 82
11, 73, 82
73, 82

125, 134
54
125, 126, 127
54
125, 126, 127
54

55, 125, 131, 132, 133

54

67, 68

66, 67

73, 74, 82
73, 74, 82
73, 74, 82
126, 127, 132
111, 112

31, 32, 85, 87
68, 69

109, 125, 135
54, 109, 125, 135
102

37

56, 125, 135
36

126, 127, 132
126, 127, 132
126, 127, 132
126, 127, 132
126, 127, 132

52, 53, 109, 126, 131
55, 125, 126, 128
31, 32, 85, 87

69
25, 37, 102, 103, 129
29, 30, 37, 106

X Reference 1.1

©Abstract Hardware Ltd 1991,1994

NoDrawable 28, 37, 40, 41, 56,
57,59, 75, 77, 78, 93, 97, 105, 106,
110, 127, 129, 132

NoExpose 41, 82, 125, 133
NoFont 28, 37, 48, 49
Nonconvex 49, 50
NormalState 117, 118
NorthEastGravity 102, 103, 123
NorthGravity 102, 103
NorthWestGravity 102, 103, 123
NoSymbol 53
Not 15, 52
Nothing 67
Notify Ancestor 131, 132, 133
NotifyDetail 131, 133
NotifyDetailNone 131, 133
NotifyGrab 131, 132, 133
NotifyInferior 131, 132, 133
NotifyMode 131, 133
NotifyNonLinear 131, 132, 133
NotifyNonLinearVirtual 131, 132, 133
NotifyNormal 131, 132, 133
NotifyPointer 131, 133
NotifyPointerRoot 131, 133
NotifyUngrab 131, 132, 133
NotifyVirtual 131, 132, 133
NotifyWhileGrabbed 131, 133
NotUseful 35, 100, 102, 103
NoVisual 37
NullHandler 55
O
OffsetRect 69
Opposite 107, 130
Or 15
OutsetRect 69
Overlap 66, 67
OwnerGrabButtonMask 54
P
ParentRelative 37, 105, 106, 112
PAspect 121, 122
PBaseSize 121, 122
Pixel 16
Placement 128
PlaceOnBottom 128
PlaceOnTop 128
PMaxSize 121, 122
PMinSize 121, 122
PointerMotionHintMask 54
PointerMotionMask 54
PointerRoot 37, 56, 57, 118

©Abstract Hardware Ltd 1991,1994

Pointer Window
PolyShape

PPosition
PreferBlanking
PResizelnc
PropertyArc
PropertyAtom
PropertyBitmap
PropertyChangeMask
PropertyColormap
PropertyCursor
PropertyDrawable
PropertyFont
PropertyInteger
PropertyPixmap
PropertyPoint
PropertyRectangle
PropertyRGBColormap
PropertyString
PropertyValue
PropertyVisual
PropertyWindow
PropertyWMHints
PropertyWMIconSizes
Property WMSizeHints
ProtocolRevision
Protocol Version
PseudoColor

PSize

PSPerChar
PWinGravity

R

RaiseLowest

Rect

Reflect
ReparentNotify
ResizeRedirectMask
ResizeRequest
RevertCode
RevertToNone
RevertToParent
RevertToPointerRoot
RGB_COLOR_MAP
RGB_DEFAULT_MAP
Right

RightOf
RootWindow

S

SameDrawable
SaveMode

37

49

121, 122
94

121, 122
91

91

91

54

91

91

91

91

91

91

91

91

91

91

91

91

91

91

91

91
37, 38
38

18, 19, 23, 24, 25
121, 122
59, 60
121, 122

111, 112
51, 67, 68

70

112, 125, 135
54, 106

54, 125, 136
56

56, 57

56, 57

56, 57

27, 28

27, 28

67, 68

66, 67

38

33
94

X Reference 1.1

ScreenSaverActive
ScreenSaverReset
Section
SelectionClear
SelectionNotify
SelectionRequest
ServerVendor
ShapeClass
ShiftDown
ShiftMask
SouthEastGravity
SouthGravity
SouthWestGravity
SplitRect
StackMode
StateHint
StaticColor
StaticGravity
StaticGray
StippleShape

147

94, 95

94, 95

67

93, 125, 136
93, 125, 137
93, 125, 137
38

39

52, 53

53, 126, 127, 132
102, 103, 123
102, 103

102, 103, 123
68, 69

107, 130

117, 118

23, 24, 25
102, 103

23, 24, 25, 29
39, 40

StructureNotifyMask 54, 128, 129, 131, 134,

135, 136, 138

SubstructureNotifyMask 54, 128, 129, 131,
134, 135, 136, 138

SubstructureRedirectMask 54, 106, 108,
109, 111, 112
SubtractPoint 66
T
TileShape 39, 40
Top 67, 68
Toplf 107, 130
TopLeft 67, 68
TopRight 67, 68
TrueColor 23, 24, 25
U
Union 67
UnmapGravity 102, 103, 138
UnmapNotify 113, 125, 133, 137
Unsorted 78
\Y
VendorRelease 39
Vertically Abutting 66, 67
Visibility 138
VisibilityChangeMask 54
VisibilityNotify 125, 133, 138
VisibilityObscured 138
VisibilityPartiallyObscured 138
VisibilityUnobscured 138

148

VisualBlueMask 86
VisualClass 23, 24
VisualExists 33
VisualGreenMask 86
VisuallD 33
VisualRedMask 86

W
WestGravity 102, 103
WhenMapped 35, 100, 102, 103, 105
WhitePixel 15, 16
Width 67, 68
WindingRule 75, 80
WindowClass 99, 100, 102
Within 66, 67
WM_CLASS 115, 120
WM_CLIENT_MACHINE 92, 115, 120
WM_COLORMAP_WINDOWS 116
WM_COMMAND 92, 117, 120
WM_HINTS 118, 120
WM_ICON_NAME 92, 119, 120
WM_NAME 92, 119, 120
WM_NORMAL_HINTS 120, 122, 123
WM_SIZE_HINTS 121, 122
WM_TRANSIENT_FOR 114
X

XActivateScreenSaver 94, 95
XAddPixel 86, 88
XAllocColor 17, 18, 19, 20, 25
XAllocColorCells 17, 18, 19, 25, 142

XAllocColorPlanes 17, 18, 19, 25, 27, 142

XAllocNamedColor 17, 18, 19, 20, 25
XArc 42,43, 49, 91
XAutoRepeatOff 98
XAutoRepeatOn 98
XA _PIXMAP 137
XA _PRIMARY 11, 93, 137
XA _SECONDARY 93
XA STRING 11, 117
XA_WINDOW 116
XBell 98, 142
XChangeGC 71, 76, 78, 141

XChangeWindowAttributes 25, 26, 104, 105
XCharStruct 59, 60, 61, 62, 63, 64, 65
XCirculateSubwindows 110, 111, 112
XCirculateSubwindowsDown 110, 111, 112

XCirculateSubwindowsUp 110, 111
XClearArea 40, 41, 141
XClearWindow 40, 41, 105, 141

XColor 13, 16, 17, 18, 19, 20, 21, 22, 24, 28,
29, 30

X Reference 1.1 ©Abstract Hardware Ltd 1991,199/

XConfigureWindow 106, 107, 141
XConvertSelection 92, 93, 137
XCopyArea 41, 75, 82, 134, 141
XCopyColormapAndFree 24, 25
XCopyPlanedl, 42, 75, 82, 96, 134, 141, 142
XCreateBitmapFromData 96, 97
XCreateColormap 24, 25, 27, 141
XCreateFontCursor 28
XCreateGC 71, 76, 78
XCreateGlyphCursor 28, 29, 142
XCreatelmage 86, 87
XCreatePixmap 95, 96, 142
XCreatePixmapCursor 28, 29, 141

XCreatePixmapFromBitmapData 96, 97,

141
XCreateSimpleWindow 26, 99, 101
XCreateWindow 25, 26, 99, 100
XDefineCursor 29, 30, 100
XDeleteProperty 90
XDestroySubwindows 101
XDestroyWindow 13, 101
XDrawArc 42, 43
XDrawArcs 42, 43
XDrawlmageString 44, 48
XDrawlmageString16 44
XDrawLine 45
XDrawLines 11, 45
XDrawPoint 46
XDrawPoints 46
XDrawRectangle 46, 47
XDrawRectangles 46, 47
XDrawSegments 45
XDrawString 47, 48
XDrawString16 47
XDrawText 48, 49
XDrawText16 48, 49
XEvent 55, 56, 125
XFillArc 49, 51
XFillArcs 49, 51, 75
XFillPolygon 49, 50, 75
XFillRectangle 49, 50
XFillRectangles 49, 50
XFlush 57, 58
XFontStruct 48, 59, 60, 61, 62, 63, 64, 65,
66
XForceScreenSaver 94, 95
XFreeColormap 13, 24, 25, 129
XFreeColors 13, 17, 19, 25, 139, 142
XFreeCursor 13, 30
XFreeFont 29, 61, 64
XFreeGC 13, 71, 76
XFreePixmap 13, 95, 96, 97
XGCValue 71

©Abstract Hardware Ltd 1991,1994

XGetAtomName 90, 91
XGetDefault 20, 98, 99
XGetFontPath 64
XGetGeometry 101, 102, 104
XGetlconSizes 113, 114
XGetlmage 88, 89, 141
XGetInputFocus 56, b7
XGetPixel 86, 88
XGetRGBColormaps 26, 28
XGetScreenSaver 94, 95
XGetSelectionOwner 92, 93
XGetSublmage 88, 89, 141
XGetTextProperty 91, 92, 115, 119
XGetTransientForHint 114
XGetWindowAttributes 101, 102, 104
XGetWindowBorderWidth 104
XGetWindowChildren 104
XGetWindowDepth 104
XGetWindowParent 104
XGetWindowPosition 104
XGetWindowRoot 104
XGetWindowSize 104
XGetWMClass 114, 115
XGetWMClientMachine 115
XGetWMColormapWindows 116
XGetWMCommand 116, 117
XGetWMHints 117, 118
XGetWMIconName 118, 119
XGetWMName 119
XGetWMNormalHints 121, 122
XGetWMSizeHints 121, 122
XImage 85, 86, 87, 88, 89
XlInstallColormap 25, 26, 105
XlInternAtom 90, 91
XListFonts 60, 61
XListFontsWithInfo 60, 61
XListInstalledColormaps 25, 26
XLoadFont 61, 63
XLoadQueryFont 11, 61, 63
XLookupColor 19, 20
XLookupString 53
XLowerWindow 110, 111
XMapRaised 108, 109
XMapSubwindows 108, 109
XMapWindow 100, 108, 109
XMoveResizeWindow 106, 108
XMoveWindow 106, 107
Xor 15
XParseColor 20
XPutImage 88, 89, 97, 141
XPutPixel 86, 88
XQueryBestCursor 39, 40
XQueryBestSize 39, 40

X Reference 1.1

XQueryBestStipple
XQueryBestTile
XQueryColor
XQueryColors
XQueryFont
XQueryKeymap
XQueryPointer
XQueryTree
XRaiseWindow
XReadBitmapFile
XRecolorCursor
XReparentWindow
XResetScreenSaver
XResizeWindow
XRestackWindows
XSelectInput
XSendSelectionNotify
XSetArcMode
XSetBackground
XSetClipMask
XSetClipOrigin
XSetClipRectangles
XSetColours
XSetDashes
XSetFillRule
XSetFillStyle
XSetFont
XSetFontPath
XSetForeground
XSetFunction

XSetGraphicsExposures

XSetHandler
XSetIconSizes
XSetInputFocus
XSetLineAttributes
XSetPlaneMask
XSetProperty
XSetRGBColormaps
XSetScreenSaver
XSetSelectionOwner
XSetState
XSetStipple
XSetSubwindowMode
XSetTile
XSetTransientForHint
XSetTSOrigin

XSetWindowAttributes
XSetWindowBackground

149

39, 40
39, 40
19, 20
19, 20
61, 63
98

109, 110
104, 110
110, 111
96, 97
29, 30
112, 141
94, 95
106, 108, 142

110, 111, 112, 141

54, 139
92, 93, 94
76

76

77, 78

77

75, 76, 77, 78, 141

78

75, 76, 79, 142
79, 80

80

80

61, 64

81

81

81, 82

52, 55, 56, 135
113, 114

56, 57, 141

82

82

91, 92, 115, 119
26, 27

94, 95, 142
92, 93, 136, 137
83

83

84

84

114

85

99, 100, 104, 105

104, 105, 106

XSetWindowBackgroundPixmap 104, 105,

106
XSetWindowBorder

XSetWindowBorderPixmap
XSetWindowBorderWidth

104, 105, 106
104, 105, 106
106, 108

150

XSetWindowColormap 11, 24, 25, 26, 141

XSetWMClass 114, 115, 120
XSetWMClientMachine 115
XSetWMColormapWindows 116
XSetWMCommand 116, 117, 120
XSetWMHints 114, 117, 118, 120
XSetWMIconName 118, 119, 120
XSetWMName 119, 120
XSetWMNormalHints 120, 121, 122
XSetWMProperties 119, 120
XSetWMSizeHints 121
XStandardColormap 26, 27, 91
XStoreColor 19, 20, 21, 22
XStoreColors 19, 21, 22, 139, 142
XStoreNamedColor 19, 21, 22, 139
XSublmage 86, 88
XSync 57, 58
XSyncronise 58
XTextExtents 44, 64, 65
XTextExtents16 64, 65
XTextItem 48
XTextItem16 48, 49
XTextWidth 65, 66
XTextWidth16 65, 66
XTranslateCoordinates 58, 59
XUndefineCursor 29, 30
XUninstallColormap 25, 26
XUnloadFont 13, 61, 63, 64
XUnmapSubwindows 113
XUnmapWindow 113
XWindowAttributes 101, 102, 104
XWindowChanges 106, 107

XWindows 18, 19, 20, 21, 26, 33, 34, 51, 52,
61, 63, 64, 88, 89, 91, 92, 99, 100,
101, 104, 110, 114, 116, 117, 119

XWMGeometry 122, 123
XWMHint 91, 117, 119, 120
XWMSizeHint 91, 119, 120, 121, 122, 123
XWDMStateHint 117
XWriteBitmapFile 96, 97
XYBitmap 87, 88, 89, 141
XYPixmap 87, 88, 89, 141
Y
YSorted 78
YXBanded 78
YXSorted 78
7
ZoomState 117, 118

ZPixmap 87, 88, 89, 141

X Reference 1.1

©Abstract Hardware Ltd 1991,1994

